21 research outputs found
Evaluation of morphological traits, genetic diversity and major resistance genes in barley subpopulations cultivated under organic and conventional farming systems
Received: March 13th, 2021 ; Accepted: June 21st, 2021 ; Published: September 6th, 2021 ; Correspondence: [email protected] crop varieties currently grown in organic conditions have been bred for
conventional farming, and are not adapted to increased environmental variability under organic
farming conditions and unpredictable environmental fluctuations due to climate change. This can
be mitigated by the use of heterogeneous material, increasing genetic diversity and enabling
adaptation to local conditions. The objective of this study was to determine the effects of several
generations of cultivation in parallel under organic and conventional farming systems on the
genetic diversity, morphological traits and frequency of major disease resistance genes as
indicators of adaptation to the farming system in heterogeneous spring barley populations with
differing levels of diversity. Populations in differing generations originating from crosses
between two, three, 10 and 15 parental genotypes were cultivated in organic and conventional
farming systems for three, four or 10 generations, thus forming subpopulations in each
environment. These subpopulations were genotyped, and tested for morphological traits in both
farming systems. A significant effect of cultivation environment on tillering capacity (p < 0.05)
was found for all tested populations and in several cases for plant height, ear length and grain
number per spike, indicating some adaptation trends. In the short term, genetic diversity
parameters were not decreased in the later generation populations in comparison to the initial
populations with the exception of observed heterozygosity, as expected for a self-pollinating
species. No clear differences in genetic diversity parameters between populations cultivated
under either organic or conventional condition for several generations were identified
HBM4EU Occupational Biomonitoring Study on e-Waste—Study Protocol
Funding Information: This work has received external funding from the European Union?s Horizon 2020 research and innovation program under grant agreement No. 733032 and received co-funding from the author?s organizations and/or Ministries. Publisher Copyright: © 2021 by the authors. Licensee MDPI, Basel, Switzerland.Workers involved in the processing of electronic waste (e-waste) are potentially exposed to toxic chemicals. If exposure occurs, this may result in uptake and potential adverse health effects. Thus, exposure surveillance is an important requirement for health risk management and prevention of occupational disease. Human biomonitoring by measurement of specific biomarkers in body fluids is considered as an effective method of exposure surveillance. The aim of this study is to investigate the internal exposure of workers processing e-waste using a human biomonitoring approach, which will stimulate improved work practices and contribute to raising awareness of potential hazards. This exploratory study in occupational exposures in e-waste processing is part of the European Human Biomonitoring Initiative (HBM4EU). Here we present a study protocol using a cross sectional survey design to study worker’s exposures and compare these to the exposure of subjects preferably employed in the same company but with no known exposure to industrial recycling of e-waste. The present study protocol will be applied in six to eight European countries to ensure standardised data collection. The target population size is 300 exposed and 150 controls. Biomarkers of exposure for the following chemicals will be used: chromium, cadmium and lead in blood and urine; brominated flame retardants and polychlorobiphenyls in blood; mercury, organophosphate flame retardants and phthalates in urine, and chromium, cadmium, lead and mercury in hair. In addition, the following effect biomarkers will be studied: micronuclei, epigenetic, oxidative stress, inflammatory markers and telomere length in blood and metabolomics in urine. Occupational hygiene sampling methods (airborne and settled dust, silicon wristbands and handwipes) and contextual information will be collected to facilitate the interpretation of the biomarker results and discuss exposure mitigating interventions to further reduce exposures if needed. This study protocol can be adapted to future European-wide occupational studiespublishersversionPeer reviewe
HBM4EU Occupational Biomonitoring Study on e-Waste—Study Protocol
Funding Information: This work has received external funding from the European Union?s Horizon 2020 research and innovation program under grant agreement No. 733032 and received co-funding from the author?s organizations and/or Ministries. Publisher Copyright: © 2021 by the authors. Licensee MDPI, Basel, Switzerland.Workers involved in the processing of electronic waste (e-waste) are potentially exposed to toxic chemicals. If exposure occurs, this may result in uptake and potential adverse health effects. Thus, exposure surveillance is an important requirement for health risk management and prevention of occupational disease. Human biomonitoring by measurement of specific biomarkers in body fluids is considered as an effective method of exposure surveillance. The aim of this study is to investigate the internal exposure of workers processing e-waste using a human biomonitoring approach, which will stimulate improved work practices and contribute to raising awareness of potential hazards. This exploratory study in occupational exposures in e-waste processing is part of the European Human Biomonitoring Initiative (HBM4EU). Here we present a study protocol using a cross sectional survey design to study worker’s exposures and compare these to the exposure of subjects preferably employed in the same company but with no known exposure to industrial recycling of e-waste. The present study protocol will be applied in six to eight European countries to ensure standardised data collection. The target population size is 300 exposed and 150 controls. Biomarkers of exposure for the following chemicals will be used: chromium, cadmium and lead in blood and urine; brominated flame retardants and polychlorobiphenyls in blood; mercury, organophosphate flame retardants and phthalates in urine, and chromium, cadmium, lead and mercury in hair. In addition, the following effect biomarkers will be studied: micronuclei, epigenetic, oxidative stress, inflammatory markers and telomere length in blood and metabolomics in urine. Occupational hygiene sampling methods (airborne and settled dust, silicon wristbands and handwipes) and contextual information will be collected to facilitate the interpretation of the biomarker results and discuss exposure mitigating interventions to further reduce exposures if needed. This study protocol can be adapted to future European-wide occupational studiespublishersversionPeer reviewe