165 research outputs found

    Incident angle dependence of reactions between graphene and hydrogen atom by molecular dynamics simulation

    Full text link
    Incident angle dependence of reactions between graphene and hydrogen atoms are obtained qualitatively by classical molecular dynamics simulation under the NVE condition with modified Brenner reactive empirical bond order (REBO) potential. Chemical reaction depends on two parameters, i.e., polar angle θ\theta and azimuthal angle ϕ\phi of the incident hydrogen. From the simulation results, it is found that the reaction rates strongly depend on polar angle θ\theta. Reflection rate becomes larger with increasing θ\theta, and the θ\theta dependence of adsorption rate is also found. The θ\theta dependence is caused by three dimensional structure of the small potential barrier which covers adsorption sites. ϕ\phi dependence of penetration rate is also found for large θ\theta.Comment: 4 pages, 7 figure

    編集後記

    Get PDF

    編集後記

    Get PDF

    On Writing English Well

    Get PDF

    Hybrid Simulation between Molecular Dynamics and Binary Collision Approximation Codes for Hydrogen injection onto Carbon Materials

    Full text link
    Molecular dynamics (MD) simulation with modified Brenner's reactive empirical bond order (REBO) potential is a powerful tool to investigate plasma wall interaction on divertor plates in a nuclear fusion device. However, MD simulation box's size is less than several nm for the performance of a computer. To extend the size of the MD simulation, we develop a hybrid simulation code between MD code using REBO potential and binary collision approximation (BCA) code. Using the BCA code instead of computing all particles with a high kinetic energy for every step in the MD simulation, considerable computation time is saved. By demonstrating a hydrogen atom injection on a graphite by the hybrid simulation code, it is found that the hybrid simulation code works efficiently in a large simulation box.Comment: 5 pages, 5 figure

    Toward Effective Reading

    Get PDF

    Highly Invasive Intracranial Malignant Schwannoma in a Rat

    Get PDF
    A highly invasive intracranial malignant schwannoma containing several masses was detected in a 28-week-old male Crl:CD(SD) rat. Macroscopically, 3 masses were noted in the cranial cavity; one was present at the bottom of the cranial cavity and involved the trigeminal nerve, and the other two were in the parietal bone. Histologically, each mass consisted of fusiform cells with interlacing fascicular, wavy and nuclear pseudopalisading arrangements and round cells with cystic lesions. The tumor cells invaded not only the brain but also the parietal bone. In the brain, the tumor cells infiltrated diffusely into the leptomeningeal and perivascular spaces and parenchyma, in which the tumor cell morphology and invasive pattern closely resembled those of malignant astrocytoma and malignant reticulosis. Immunohistochemically, the tumor cells in the masses showed positive reactions for both S-100 protein and GFAP, while those in the cerebral invasion sites were negative for GFAP and less positive for S-100 protein. Electron microscopically, a single basal lamina layer and short intricate cell processes were confirmed in the tumor cells. From these results, the present tumor was diagnosed as a malignant schwannoma arising in the cranial cavity, probably originating from the trigeminal nerve. The present tumor is considered to be a relatively unique malignant schwannoma based on its growth and invasion patterns

    小特集:磁場閉じ込め核融合装置における水素原子分子輸送研究の新展開 2.要素モデルの統合が実現する壁から プラズマまでを含めた中性粒子輸送研究

    Get PDF
    非接触をはじめとするダイバータプラズマの諸現象を理解するため,壁での粒子リサイクリング,荷電粒子,中性粒子を扱うコードの統合を進めている.水素分子には,電子状態のほか,回転および振動の内部自由度があり,分子活性化再結合をはじめとするプラズマ中の水素分子の各種の反応速度係数は,水素分子の始状態の振動・回転量子数により,数桁にわたって変化する.また,低温のプラズマでは,プラズマ中の電子やプロトン衝突による水素分子の振動・回転励起がプラズマのエネルギー損失チャンネルとして重要と考えられる.このため,水素分子の振動・回転状態を中性粒子やプラズマの輸送と組み合わせて解く統合モデルを開発した

    Molecular Dynamics Simulation of Chemical Vapor Deposition of Amorphous Carbon: Dependence on H/C Ratio of Source Gas

    Full text link
    By molecular dynamics simulation, the chemical vapor deposition of amorphous carbon onto graphite and diamond surfaces was studied. In particular, we investigated the effect of source H/C ratio, which is the ratio of the number of hydrogen atoms to the number of carbon atoms in a source gas, on the deposition process. In the present simulation, the following two source gas conditions were tested: one was that the source gas was injected as isolated carbon and hydrogen atoms, and the other was that the source gas was injected as hydrocarbon molecules. Under the former condition, we found that as the source H/C ratio increases, the deposition rate of carbon atoms decreases exponentially. This exponential decrease in the deposition rate with increasing source H/C ratio agrees with experimental data. However, under the latter molecular source condition, the deposition rate did not decrease exponentially because of a chemical reaction peculiar to the type of hydrocarbon in the source gas.Comment: accepted by Jpn. J. Appl. Phys. (2008
    corecore