79 research outputs found
Pressure Destabilizes Oxygen Vacancies in Bridgmanite
Bridgmanite may contain a large proportion of ferric iron in its crystal structure in the forms of FeFeO3 and MgFeO2.5 components. We investigated the pressure dependence of FeFeO3 and MgFeO2.5 contents in bridgmanite coexisting with MgFe2O4-phase and with or without ferropericlase in the MgO-SiO2-Fe2O3 ternary system at 2,300 K, 33 and 40 GPa. Together with the experiments at 27 GPa reported in Fei et al. (2020, https://doi.org/10.1029/2019GL086296), our results show that the FeFeO3 and MgFeO2.5 contents in bridgmanite decrease from 7.6 to 5.3 mol % and from 2 to 3 mol % to nearly zero, respectively, with increasing pressure from 27 to 40 GPa. Accordingly, the total Fe3+ decreases from 0.18 to 0.11 pfu. The formation of oxygen vacancies (MgFeO2.5 component) in bridgmanite is therefore dramatically suppressed by pressure. Oxygen vacancies can be produced by ferric iron in Fe3+-rich bridgmanite under the topmost lower mantle conditions, but the concentration should decrease rapidly with increasing pressure. The variation of oxygen-vacancy content with depth may potentially affect the physical properties of bridgmanite and thus affect mantle dynamics
Thermal Equation of State of Fe3C to 327 GPa and Carbon in the Core
The density and sound velocity structure of the Earth’s interior is modeled on seismological observations and is known as the preliminary reference Earth model (PREM). The density of the core is lower than that of pure Fe, which suggests that the Earth’s core contains light elements. Carbon is one plausible light element that may exist in the core. We determined the equation of state (EOS) of Fe3C based on in situ high-pressure and high-temperature X-ray diffraction experiments using a diamond anvil cell. We obtained the P–V data of Fe3C up to 327 GPa at 300 K and 70–180 GPa up to around 2300 K. The EOS of nonmagnetic (NM) Fe3C was expressed by two models using two different pressure scales and the third-order Birch–Murnaghan EOS at 300 K with the Mie–Grüneisen–Debye EOS under high-temperature conditions. The EOS can be expressed with parameters of V0 = 148.8(±1.0) Å3, K0 = 311.1(±17.1) GPa, K0′ = 3.40(±0.1), γ0 = 1.06(±0.42), and q = 1.92(±1.73), with a fixed value of θ0 = 314 K using the KBr pressure scale (Model 1), and V0 = 147.3(±1.0) Å3, K0 = 323.0(±16.6) GPa, K0′ = 3.43(±0.09), γ0 = 1.37(±0.33), and q = 0.98(±1.01), with a fixed value of θ0 = 314 K using the MgO pressure scale (Model 2). The density of Fe3C under inner core conditions (assuming P = 329 GPa and T = 5000 K) calculated from the EOS is compatible with the PREM inner core
多職種連携と患者特性に配慮したケアを行った高度肥満症の一例
A 48-year-old man who weighed 216 kg was significantly overweight with a body mass index (BMI)of 75.6kg/m2, and was unable to walk due to disuse syndrome. Because of the psychological and social problems in the background, a psychological examination was performed and the staff took time to build a trusting relationship with the patient, taking into account his characteristics. With diet and rehabilitation, he was able to lose weight to 124kg and BMI 43.9kg/m2 over 600 days, and was able to walk with assistive devices and defecate by himself. The patient was discharged from our hospital after a series of multidisciplinary meetings with medical, nursing, welfare, and governmental agencies to create an environment for home recuperation. The reasons for the improvement to enable him to be discharged from the hospital were due to the multi-disciplinary meetings among the staff inside and outside the hospital, information sharing and advanced coordination, and smooth communication with the patient by taking into account his characteristics from a psychological standpoint
Identification of RNF213 as a Susceptibility Gene for Moyamoya Disease and Its Possible Role in Vascular Development
もやもや病感受性遺伝子の特定とその機能についての発見. 京都大学プレスリリース. 2011-7-21.Background Moyamoya disease is an idiopathic vascular disorder of intracranial arteries. Its susceptibility locus has been mapped to 17q25.3 in Japanese families, but the susceptibility gene is unknown. Methodology/Principal Findings Genome-wide linkage analysis in eight three-generation families with moyamoya disease revealed linkage to 17q25.3 (P<10-4). Fine mapping demonstrated a 1.5-Mb disease locus bounded by D17S1806 and rs2280147. We conducted exome analysis of the eight index cases in these families, with results filtered through Ng criteria. There was a variant of p.N321S in PCMTD1 and p.R4810K in RNF213 in the 1.5-Mb locus of the eight index cases. The p.N321S variant in PCMTD1 could not be confirmed by the Sanger method. Sequencing RNF213 in 42 index cases confirmed p.R4810K and revealed it to be the only unregistered variant. Genotyping 39 SNPs around RNF213 revealed a founder haplotype transmitted in 42 families. Sequencing the 260-kb region covering the founder haplotype in one index case did not show any coding variants except p.R4810K. A case-control study demonstrated strong association of p.R4810K with moyamoya disease in East Asian populations (251 cases and 707 controls) with an odds ratio of 111.8 (P = 10−119). Sequencing of RNF213 in East Asian cases revealed additional novel variants: p.D4863N, p.E4950D, p.A5021V, p.D5160E, and p.E5176G. Among Caucasian cases, variants p.N3962D, p.D4013N, p.R4062Q and p.P4608S were identified. RNF213 encodes a 591-kDa cytosolic protein that possesses two functional domains: a Walker motif and a RING finger domain. These exhibit ATPase and ubiquitin ligase activities. Although the mutant alleles (p.R4810K or p.D4013N in the RING domain) did not affect transcription levels or ubiquitination activity, knockdown of RNF213 in zebrafish caused irregular wall formation in trunk arteries and abnormal sprouting vessels. Conclusions/Significance We provide evidence suggesting, for the first time, the involvement of RNF213 in genetic susceptibility to moyamoya disease
- …