20 research outputs found

    Innovative design of bone quality-targeted intervertebral spacer: accelerated functional fusion guiding oriented collagen and apatite microstructure without autologous bone graft

    Get PDF
    BACKGROUND CONTEXT: Although autologous bone grafting is widely considered as an ideal source for interbody fusion, it still carries a risk of nonunion. The influence of the intervertebral device should not be overlooked. Requirements for artificial spinal devices are to join the vertebrae together and recover the original function of the spine rapidly. Ordered mineralization of apatite crystals on collagen accelerates bone functionalization during the healing process. Particularly, the stable spinal function requires the ingrowth of an ordered collagen and apatite matrix which mimics the intact intervertebral microstructure. This collagen and apatite ordering is imperative for functional bone regeneration, which has not been achieved using classical autologous grafting. PURPOSE: We developed an intervertebral body device to achieve high stability between the host bone and synthesized bone by controlling the ordered collagen and apatite microstructure. STUDY DESIGN: This was an in vivo animal study. METHODS: Intervertebral spacers with a through-pore grooved surface structure, referred to as a honeycomb tree structure, were produced using metal 3D printing. These spacers were implanted into normal sheep at the L2–L3 or L4–L5 disc levels. As a control group, grafting autologous bone was embedded. The mechanical integrity of the spacer/bone interface was evaluated through push-out tests. RESULTS: The spacer with honeycomb tree structure induced anisotropic trabecular bone growth with textured collagen and apatite orientation in the through-pore and groove directions. The push-out load of the spacer was significantly higher than that of the conventional autologous graft spacer. Moreover, the load was significantly correlated with the anisotropic texture of the newly formed bone matrix. CONCLUSIONS: The developed intervertebral spacer guided the regenerated bone matrix orientation of collagen and apatite, resulting in greater strength at the spacer/host bone interface than that obtained using a conventional gold-standard autologous bone graft. CLINICAL SIGNIFICANCE: Our results provide a foundation for designing future spacers for interbody fusion in human.Matsugaki A., Ito M., Kobayashi Y., et al. Innovative design of bone quality-targeted intervertebral spacer: accelerated functional fusion guiding oriented collagen and apatite microstructure without autologous bone graft. Spine Journal 23, 609 (2023); https://doi.org/10.1016/j.spinee.2022.12.011

    Enhanced Device Performance of GaInN-Based Green Light-Emitting Diode with Sputtered AlN Buffer Layer

    No full text
    In this study, we compared the device performance of GaInN-based green LEDs grown on c-plane sapphire substrates with a conventional low temperature GaN buffer layer to those with a sputtered-AlN buffer layer. The light output power and leakage current characteristics were significantly improved by just replacing the buffer layer with a sputtered-AlN layer. To understand the origin of the improvement in performance, the electrical and optical properties were compared by means of electro-reflectance spectroscopy, I⁻V curves, electroluminescence spectra, L⁻I curves, and internal quantum efficiencies. From the analysis of the results, we concluded that the improvement is mainly due to the mitigation of strain and reduction of the piezoelectric field in the multiple quantum wells active region

    Tuning the Resonant Frequency of a Surface Plasmon by Double-Metallic Ag/Au Nanoparticles for High-Efficiency Green Light-Emitting Diodes

    No full text
    Currently, the internal quantum efficiency (IQE) of GaInN-based green light-emitting diodes (LEDs) is still low. To overcome this problem, surface plasmon (SP)-enhanced LEDs have been intensively studied for the last 15 years. For an SP effect in green LEDs, Au and Ag are typically employed as the plasmonic materials. However, the resonance wavelength is determined by their material constants, which are theoretically fixed at ~537 nm for Au and ~437 nm for Ag. In this study, we aimed to tune the SP resonant wavelength using double-metallic nanoparticles (NPs) composed of Au and Ag to match the SP resonance wavelength to the LED emission wavelength to consequently improve the IQE of green LEDs. To form double-metallic NPs, Au/Ag multilayers were deposited on a GaN layer and then thermally annealed. We changed the thicknesses of the multilayers to control the Ag/Au ratio in the NPs. We show that the SP resonant wavelength could be tuned using our approach. We also demonstrate that the enhancement of the IQE in SP-enhanced LEDs was strongly dependent on the SP resonant wavelength. Finally, the highest IQE was achieved by matching the SP resonant wavelength to the LED emission wavelength

    A novel mouse model for investigating α-synuclein aggregates in oligodendrocytes: implications for the glial cytoplasmic inclusions in multiple system atrophy

    No full text
    Abstract The aggregated alpha-synuclein (αsyn) in oligodendrocytes (OLGs) is one of the pathological hallmarks in multiple system atrophy (MSA). We have previously reported that αsyn accumulates not only in neurons but also in OLGs long after the administration of αsyn preformed fibrils (PFFs) in mice. However, detailed spatial and temporal analysis of oligodendroglial αsyn aggregates was technically difficult due to the background neuronal αsyn aggregates. The aim of this study is to create a novel mouse that easily enables sensitive and specific detection of αsyn aggregates in OLGs and the comparable analysis of the cellular tropism of αsyn aggregates in MSA brains. To this end, we generated transgenic (Tg) mice expressing human αsyn-green fluorescent protein (GFP) fusion proteins in OLGs under the control of the 2’, 3’-cyclic nucleotide 3’-phosphodiesterase (CNP) promoter (CNP-SNCAGFP Tg mice). Injection of αsyn PFFs in these mice induced distinct GFP-positive aggregates in the processes of OLGs as early as one month post-inoculation (mpi), and their number and size increased in a centripetal manner. Moreover, MSA-brain homogenates (BH) induced significantly more oligodendroglial αsyn aggregates than neuronal αsyn aggregates compared to DLB-BH in CNP-SNCAGFP Tg mice, suggestive of their potential tropism of αsyn seeds for OLGs. In conclusion, CNP-SNCAGFP Tg mice are useful for studying the development and tropism of αsyn aggregates in OLGs and could contribute to the development of therapeutics targeting αsyn aggregates in OLGs

    The Dominance of Alleles Controlling Self-Incompatibility in Brassica Pollen Is Regulated at the RNA Level

    No full text
    Self-incompatibility (SI) in Brassica is controlled sporophytically by the multiallelic S-locus. The SI phenotype of pollen in an S-heterozygote is determined by the relationship between the two S-haplotypes it carries, and dominant/recessive relationships often are observed between the two S-haplotypes. The S-locus protein 11 (SP11, also known as the S-locus cysteine-rich protein) gene has been cloned from many pollen-dominant S-haplotypes (class I) and shown to encode the pollen S-determinant. However, SP11 from pollen-recessive S-haplotypes (class II) has never been identified by homology-based cloning strategies, and how the dominant/recessive interactions between the two classes occur was not known. We report here the identification and molecular characterization of SP11s from six class II S-haplotypes of B. rapa and B. oleracea. Phylogenetic analysis revealed that the class II SP11s form a distinct group separated from class I SP11s. The promoter sequences and expression patterns of SP11s also were different between the two classes. The mRNA of class II SP11, which was detected predominantly in the anther tapetum in homozygotes, was not detected in the heterozygotes of class I and class II S-haplotypes, suggesting that the dominant/recessive relationships of pollen are regulated at the mRNA level of SP11s
    corecore