31 research outputs found

    An empirical test of evolutionary theories for reproductive senescence and reproductive effort in the garter snake Thamnophis elegans

    No full text
    Evolutionary theory predicts that differential reproductive effort and rate of reproductive senescence will evolve under different rates of external mortality. We examine the evolutionary divergence of age-specific reproduction in two life-history ecotypes of the western terrestrial garter snake, Thamnophis elegans. We test for the signature of reproductive senescence (decreasing fecundity with age) and increasing reproductive effort with age (increasing reproductive productivity per gram female) in replicate populations of two life-history ecotypes: snakes that grow fast, mature young and have shorter lifespans, and snakes that grow slow, mature late and have long lives. The difference between life-history ecotypes is due to genetic divergence in growth rate. We find (i) reproductive success (live litter mass) increases with age in both ecotypes, but does so more rapidly in the fast-growth ecotype, (ii) reproductive failure increases with age in both ecotypes, but the proportion of reproductive failure to total reproductive output remains invariant, and (iii) reproductive effort remains constant in fast-growth individuals with age, but declines in slow-growth individuals. This illustration of increasing fecundity with age, even at the latest ages, deviates from standard expectations for reproductive senescence, as does the lack of increases in reproductive effort. We discuss our findings in light of recent theories regarding the phenomenon of increased reproduction throughout life in organisms with indeterminate growth and its potential to offset theoretical expectations for the ubiquity of senescence

    Does body volume constrain reproductive output in lizards?

    No full text
    The numbers and sizes of eggs produced by adult females ultimately determine the viability of populations, as well as the evolutionary fitness of the females themselves. Despite an enormous amount of literature on the adaptive significance of fecundity variation within and among populations, simpler questions—such as the proximate mechanisms by which a female determines her clutch size—have attracted less attention. Our surgical manipulations show that the amount of space available to hold eggs within a female's abdomen influences her total reproductive allocation, enabling her to flexibly modify her reproductive output as she grows larger

    Optimal annual routines: behaviour in the context of physiology and ecology

    No full text
    Organisms in a seasonal environment often schedule activities in a regular way over the year. If we assume that such annual routines have been shaped by natural selection then life-history theory should provide a basis for explaining them. We argue that many life-history trade-offs are mediated by underlying physiological variables that act on various time scales. The dynamics of these variables often preclude considering one period of the year in isolation. In order to capture the essence of annual routines, and many life-history traits, a detailed model of changes in physiological state over the annual cycle is required. We outline a modelling approach based on suitable physiological and ecological state variables that can capture this underlying biology, and describe how models based on this approach can be used to generate a range of insights and predictions
    corecore