54 research outputs found
Determination of a flexibility range for cellular manufacturing systems under product mix variations
Machine-Part cell formation through visual decipherable clustering of Self Organizing Map
Machine-part cell formation is used in cellular manufacturing in order to
process a large variety, quality, lower work in process levels, reducing
manufacturing lead-time and customer response time while retaining flexibility
for new products. This paper presents a new and novel approach for obtaining
machine cells and part families. In the cellular manufacturing the fundamental
problem is the formation of part families and machine cells. The present paper
deals with the Self Organising Map (SOM) method an unsupervised learning
algorithm in Artificial Intelligence, and has been used as a visually
decipherable clustering tool of machine-part cell formation. The objective of
the paper is to cluster the binary machine-part matrix through visually
decipherable cluster of SOM color-coding and labelling via the SOM map nodes in
such a way that the part families are processed in that machine cells. The
Umatrix, component plane, principal component projection, scatter plot and
histogram of SOM have been reported in the present work for the successful
visualization of the machine-part cell formation. Computational result with the
proposed algorithm on a set of group technology problems available in the
literature is also presented. The proposed SOM approach produced solutions with
a grouping efficacy that is at least as good as any results earlier reported in
the literature and improved the grouping efficacy for 70% of the problems and
found immensely useful to both industry practitioners and researchers.Comment: 18 pages,3 table, 4 figure
- …