22 research outputs found

    Towards a system for tracking drug delivery using frequency excited gold nanoparticles

    Get PDF
    Nanoparticle-based drugs are rapidly evolving to treat different conditions and have considerable potential. A new system based on the combination of electrical impedance tomography (EIT) imaging and a power amplifier with a RF coil has been developed to study the effect of gold nanoparticles (AuNPs) when excited in the MHz frequency range. We show that samples including AuNPs have a temperature increase of 1−1.5 °C due to the presence of RF excitation at 13.56 MHz which provides a higher rate of change for solutions without AuNPs. They also show more than a 50% increase in conductivity in difference imaging as the result of this excitation. The change for samples without AuNPs is 40%

    Towards a System for Tracking Drug Delivery Using Frequency Excited Gold Nanoparticles

    Get PDF
    Nanoparticle-based drugs are rapidly evolving to treat different conditions and have considerable potential. A new system based on the combination of electrical impedance tomography (EIT) imaging and a power amplifier with a RF coil has been developed to study the effect of gold nanoparticles (AuNPs) when excited in the MHz frequency range. We show that samples including AuNPs have a temperature increase of 1–1.5 ◦C due to the presence of RF excitation at 13.56 MHz which provides a higher rate of change for solutions without AuNPs. They also show more than a 50% increase in conductivity in difference imaging as the result of this excitation. The change for samples without AuNPs is 40%

    Breath detection using short-time Fourier transform analysis in electrical impedance tomography

    Get PDF
    Spectral analysis based on short-time Fourier transform (STFT) using Kaiser window is proposed to examine the frequency components of neonates EIT data. In this way, a simultaneous spatial-time-frequency analysis is achieved

    Nanoparticle electrical impedance tomography

    Get PDF
    We have developed a new approach to imaging with electrical impedance tomography (EIT) using gold nanoparticles (AuNPs) to enhance impedance changes at targeted tissue sites. This is achieved using radio frequency (RF) to heat nanoparticles while applying EIT imaging. The initial results using 5-nm citrate coated AuNPs show that heating can enhance the impedance in a solution containing AuNPs due to the application of an RF field at 2.60 GHz

    Effects of patient recumbency position on neonatal chest EIT

    Get PDF
    This paper investigates the overlooked effects of the patient recumbency positions on one of the key clinically used parameters in chest electrical impedance tomography (EIT) monitoring – the silent spaces. This parameter could impact medical decisions and interventions by indicating how well each lung is being ventilated. Yet it is largely dependent on assumptions of prior model at the reconstruction stage and the closely linked region of interest (ROI) during the final calculations. The potential effect of switching recumbency modes on silent spaces as a results of internal organ movements and consequently changes in initial assumptions, has been studied. The displacement and deformations caused by posture changes from supine to lateral recumbent were evaluated via simulations considering the simultaneous gravity-dependent movement and/or deformations of heart, mediastinum, lungs and the diaphragm. The reliability of simulations was verified against reference radiography images of an 18-month-old infant in supine and decubitus lateral positions. Inspecting a set of 10 patients from age range of 1 to 2 years old revealed improvements of up to 30% in the silent space parameters when applying posture consistent amendments as opposed to fixed model/ROI to each individual. To minimize the influence of image reconstruction technique on the results two different EIT reconstruction algorithms were implemented. The outcome emphasized the importance of including recumbency situation during chest EIT monitoring within the considered age range

    Thoracic shape changes in newborns due to their position

    Get PDF
    The highly compliant nature of the neonatal chest wall is known to clinicians. However, its morphological changes have never been characterized and are especially important for a customised monitoring of respiratory diseases. Here, we show that a device applied on newborns can trace their chest boundary without the use of radiation. Such technology, which is easy to sanitise between patients, works like a smart measurement tape drawing also a digital cross section of the chest. We also show that in neonates the supine position generates a significantly different cross section compared to the lateral ones. Lastly, an unprecedented comparison between a premature neonate and a child is reported

    Locating functionalized gold nanoparticles using electrical impedance tomography

    Get PDF
    Objective: An imaging device to locate functionalised nanoparticles, whereby therapeutic agents are transported from the site of administration specifically to diseased tissues, remains a challenge for pharmaceutical research. Here, we show a new method based on electrical impedance tomography (EIT) to provide images of the location of gold nanoparticles (GNPs) and the excitation of GNPs with radio frequencies (RF) to change impedance permitting an estimation of their location in cell models Methods: We have created an imaging system using quantum cluster GNPs as contrast agent, activated with RF fields to heat the functionalized GNPs, which causes a change in impedance in the surrounding region. This change is then identified with EIT. Results: Images of impedance changes of around 80±4% are obtained for a sample of citrate stabilized GNPs in a solution of phosphate-buffered saline. A second quantification was carried out using colorectal cancer cells incubated with culture media, and the internalization of GNPs into the colorectal cancer cells was undertaken to compare them with the EIT images. When the cells were incubated with functionalised GNPs, the change was more apparent, approximately 40±2%. This change was reflected in the EIT image as the cell area was more clearly identifiable from the rest of the area. Significance: EIT can be used as a new method to locate functionalized GNPs in human cells and help in the development of GNP-based drugs in humans to improve their efficacy in the future

    Cross-sectional chest circumference and shape development in infants

    Get PDF
    Objective: This study investigates the development of the thoracic cross-section at the nipple line level during the early stages of life. Unlike the descriptive awareness regarding chest development course, there exist no quantitative references concerning shape, circumference and possible dependencies to age, gender or body weight. The proposed mathematical relations are expected to help create guidelines for more realistic modelling and potential detection of abnormalities. One potential application is lung electrical impedance tomography (EIT) monitoring where accurate chest models are crucial in both extracting reliable parameters for regional ventilation function and design of EIT belts. Despite their importance, such reference data is not readily available for the younger age range due to insufficient data amid the regulations of neonatal imaging. Results: Chest circumference shows the highest correlation to body weight following the relation fx=18.3735ln0.0012x+2.1010 where x is the body weight in grams and f(x) is the chest circumference in cm at the nipple line level. No statistically significant difference in chest circumference between genders was detected. However, the shape indicated signs of both age and gender dependencies with on average boys developing a more rectangular shape than girls from the age of 1 years and 9 months

    Towards a thoracic conductive phantom for EIT

    Get PDF
    Phantom experiments are a crucial step for testing new hardware or imaging algorithms for electrical impedance tomography (EIT) studies. However, constructing an accurate phantom for EIT research remains critical; some studies have attempted to model the skull and breasts, and even fewer, as yet, have considered the thorax. In this study, a critical comparison between the electrical properties (impedance) of three materials is undertaken: a polyurethane foam, a silicone mixture and a thermoplastic polyurethane filament. The latter was identified as the most promising material and adopted for the development of a flexible neonatal torso. The validation is performed by the EIT image reconstruction of the air filled cavities, which mimic the lung regions. The methodology is reproducible for the creation of any phantom that requires a slight flexibility

    Torso shape detection to improve lung monitoring

    Get PDF
    Newborns with lung immaturity often require continuous monitoring and treatment of their lung ventilation in intensive care units, especially if born preterm. Recent studies indicate that Electrical Impedance Tomography (EIT) is feasible in newborn
 infants and children, and can quantitatively identify changes in regional lung aeration and ventilation following alterations to respiratory conditions. Information on the patient-specic shape of the torso and its role in minimizing the artefacts in the
 reconstructed images can improve the accuracy of the clinical parameters obtained from EIT. Currently, only idealized models or those segmented from CT scans are usually adopted. This study presents and compares two methodologies that can
 detect the patient-specic torso shape by means of wearable devices based on: (1) previously reported bend sensor technology and (2) a novel approach based on the use of accelerometers. The reconstruction of different phantoms, taking into account
 anatomical asymmetries and different sizes, are produced for comparison. As a result, the accelerometers are more versatile than bend sensors, which cannot be used on bigger cross-sections. The computational study estimates the optimal number of
 accelerometers required in order to generate an image reconstruction comparable to the use of a CT scan as the forward model. Furthermore, since the patient position is crucial to monitoring lung ventilation, the orientation of the phantoms is automatically
 detected by the accelerometer-based method. [Abstract copyright: © 2018 Institute of Physics and Engineering in Medicine.
    corecore