7,046 research outputs found
Aerosol-cloud-precipitation effects over Germany as simulated by a convective-scale numerical weather prediction model
Possible aerosol-cloud-precipitation effects over Germany are investigated using the COSMO model in a convection-permitting configuration close to the operational COSMO-DE. Aerosol effects on clouds and precipitation are modeled by using an advanced two-moment microphysical parameterization taking into account aerosol assumptions for cloud condensation nuclei (CCN) as well as ice nuclei (IN). Simulations of three summer seasons have been performed with various aerosol assumptions, and are analysed regarding surface precipitation, cloud properties, and the indirect aerosol effect on near-surface temperature. We find that the CCN and IN assumptions have a strong effect on cloud properties, like condensate amounts of cloud water, snow and rain as well as on the glaciation of the clouds, but the effects on surface precipitation are – when averaged over space and time – small. This robustness can only be understood by the combined action of microphysical and dynamical processes. On one hand, this shows that clouds can be interpreted as a buffered system where significant changes to environmental parameters, like aerosols, have little effect on the resulting surface precipitation. On the other hand, this buffering is not active for the radiative effects of clouds, and the changes in cloud properties due to aerosol perturbations may have a significant effect on radiation and near-surface temperature
Fluctuation-Dissipation Theorem in Nonequilibrium Steady States
In equilibrium, the fluctuation-dissipation theorem (FDT) expresses the
response of an observable to a small perturbation by a correlation function of
this variable with another one that is conjugate to the perturbation with
respect to \emph{energy}. For a nonequilibrium steady state (NESS), the
corresponding FDT is shown to involve in the correlation function a variable
that is conjugate with respect to \emph{entropy}. By splitting up entropy
production into one of the system and one of the medium, it is shown that for
systems with a genuine equilibrium state the FDT of the NESS differs from its
equilibrium form by an additive term involving \emph{total} entropy production.
A related variant of the FDT not requiring explicit knowledge of the stationary
state is particularly useful for coupled Langevin systems. The \emph{a priori}
surprising freedom apparently involved in different forms of the FDT in a NESS
is clarified.Comment: 6 pages; EPL, in pres
Mobility and Diffusion of a Tagged Particle in a Driven Colloidal Suspension
We study numerically the influence of density and strain rate on the
diffusion and mobility of a single tagged particle in a sheared colloidal
suspension. We determine independently the time-dependent velocity
autocorrelation functions and, through a novel method, the response functions
with respect to a small force. While both the diffusion coefficient and the
mobility depend on the strain rate the latter exhibits a rather weak
dependency. Somewhat surprisingly, we find that the initial decay of response
and correlation functions coincide, allowing for an interpretation in terms of
an 'effective temperature'. Such a phenomenological effective temperature
recovers the Einstein relation in nonequilibrium. We show that our data is well
described by two expansions to lowest order in the strain rate.Comment: submitted to EP
Effective Confinement as Origin of the Equivalence of Kinetic Temperature and Fluctuation-Dissipation Ratio in a Dense Shear Driven Suspension
We study response and velocity autocorrelation functions for a tagged
particle in a shear driven suspension governed by underdamped stochastic
dynamics. We follow the idea of an effective confinement in dense suspensions
and exploit a time-scale separation between particle reorganization and
vibrational motion. This allows us to approximately derive the
fluctuation-dissipation theorem in a "hybrid" form involving the kinetic
temperature as an effective temperature and an additive correction term. We
show numerically that even in a moderately dense suspension the latter is
negligible. We discuss similarities and differences with a simple toy model, a
single trapped particle in shear flow
Modified Fluctuation-dissipation theorem for non-equilibrium steady-states and applications to molecular motors
We present a theoretical framework to understand a modified
fluctuation-dissipation theorem valid for systems close to non-equilibrium
steady-states and obeying markovian dynamics. We discuss the interpretation of
this result in terms of trajectory entropy excess. The framework is illustrated
on a simple pedagogical example of a molecular motor. We also derive in this
context generalized Green-Kubo relations similar to the ones derived recently
by Seifert., Phys. Rev. Lett., 104, 138101 (2010) for more general networks of
biomolecular states.Comment: 6 pages, 2 figures, submitted in EP
Subsurface microbial methanotrophic mats in the Black Sea
A nodule-shaped microbial mat was found subsurface in sediments of a gas seep in the anoxic Black Sea. This mat was dominated by ANME-1 archaea and consumed methane and sulfate simultaneously. We propose that such subsurface mats represent the initial stage of previously investigated microbial reefs
Ab initio simulations of liquid NaSn alloys: Zintl anions and network formation
Using the Car-Parrinello technique, ab initio molecular dynamics simulations
are performed for liquid NaSn alloys in five different compositions (20, 40,
50, 57 and 80 % sodium). The obtained structure factors agree well with the
data from neutron scattering experiments. The measured prepeak in the structure
factor is reproduced qualitatively for most compositions. The calculated and
measured positions of all peaks show the same trend as function of the
composition.\\ The dynamic simulations also yield information about the
formation and stability of Sn clusters (Zintl anions) in the liquid. In our
simulations of compositions with 50 and 57 % sodium we observe the formation of
networks of tin atoms. Thus, isolated tin clusters are not stable in such
liquids. For the composition with 20 % tin only isolated atoms or dimers of tin
appear, ``octet compounds'' of one Sn atom surrounded by 4 Na atoms are not
observed.Comment: 12 pages, Latex, 3 Figures on reques
Line Defects in Molybdenum Disulfide Layers
Layered molecular materials and especially MoS2 are already accepted as
promising candidates for nanoelectronics. In contrast to the bulk material, the
observed electron mobility in single-layer MoS2 is unexpectedly low. Here we
reveal the occurrence of intrinsic defects in MoS2 layers, known as inversion
domains, where the layer changes its direction through a line defect. The line
defects are observed experimentally by atomic resolution TEM. The structures
were modeled and the stability and electronic properties of the defects were
calculated using quantum-mechanical calculations based on the
Density-Functional Tight-Binding method. The results of these calculations
indicate the occurrence of new states within the band gap of the semiconducting
MoS2. The most stable non-stoichiometric defect structures are observed
experimentally, one of which contains metallic Mo-Mo bonds and another one
bridging S atoms
On the causal properties of warped product spacetimes
It is shown that the warped product spacetime P=M *_f H, where H is a
complete Riemannian manifold, and the original spacetime M share necessarily
the same causality properties, the only exceptions being the properties of
causal continuity and causal simplicity which present some subtleties. For
instance, it is shown that if diamH=+\infty, the direct product spacetime P=M*H
is causally simple if and only if (M,g) is causally simple, the Lorentzian
distance on M is continuous and any two causally related events at finite
distance are connected by a maximizing geodesic. Similar conditions are found
for the causal continuity property. Some new results concerning the behavior of
the Lorentzian distance on distinguishing, causally continuous, and causally
simple spacetimes are obtained. Finally, a formula which gives the Lorentzian
distance on the direct product in terms of the distances on the two factors
(M,g) and (H,h) is obtained.Comment: 22 pages, 2 figures, uses the package psfra
- …