7,678 research outputs found

    Giant vesicles at the prolate-oblate transition: A macroscopic bistable system

    Full text link
    Giant phospholipid vesicles are shown to exhibit thermally activated transitions between a prolate and an oblate shape on a time scale of several seconds. From the fluctuating contour of such a vesicle we extract ellipticity as an effective reaction coordinate whose temporal probability distribution is bimodal. We then reconstruct the effective potential from which we derive an activation energy of the order of kBTk_BT in agreement with theoretical calculations. The dynamics of this transition is well described within a Kramers model of overdamped diffusion in a bistable potential. Thus, this system can serve as a model for macroscopic bistability.Comment: 10 pages, LaTeX, epsfig, 4 eps figures included, to appear in Europhys. Let

    Generation of specific antibodies against the rap1A, rap1B and rap2 small GTP-binding proteins. Analysis of rap and ras proteins in membranes from mammalian cells

    Get PDF
    Specific antibodies against rap1A and rap1B small GTP-binding proteins were generated by immunization of rabbits with peptides derived from the C-terminus of the processed proteins. Immunoblot analysis of membranes from several mammalian cell lines and human thrombocytes with affinity-purified antibodies against rap1A or rap1B demonstrated the presence of multiple immunoreactive proteins in the 22-23 kDa range, although at strongly varying levels. Whereas both proteins were present in substantial amounts in membranes from myelocytic HL-60, K-562 and HEL cells, they were hardly detectable in membranes from lymphoma U-937 and S49.1 cyc- cells. Membranes from human thrombocytes and 3T3-Swiss Albino fibroblasts showed strong rap1B immunoreactivity, whereas rap1A protein was present in much lower amounts. In the cytosol of HL-60 cells, only small amounts of rap1A and rap1B proteins were detected, unless the cells were treated with lovastatin, an inhibitor of hydroxymethylglutaryl-coenzyme A reductase, suggesting that both proteins are isoprenylated. By comparison with recombinant proteins, the ratio of rap1A/ras proteins in membranes from HL-60 cells was estimated to be about 4:1. An antiserum directed against the C-terminus of rap2 reacted strongly with recombinant rap2, but not with membranes from tested mammalian cells. In conclusion, rap1A and rap1B proteins are distributed differentially among membranes from various mammalian cell types and are isoprenylated in HL-60 cells

    Reconstructing the global topology of the universe from the cosmic microwave background

    Get PDF
    If the universe is multiply-connected and sufficiently small, then the last scattering surface wraps around the universe and intersects itself. Each circle of intersection appears as two distinct circles on the microwave sky. The present article shows how to use the matched circles to explicitly reconstruct the global topology of space.Comment: 6 pages, 2 figures, IOP format. To be published in the proceedings of the Cleveland Cosmology and Topology Workshop 17-19 Oct 1997. Submitted to Class. Quant. Gra

    Spheres and Prolate and Oblate Ellipsoids from an Analytical Solution of Spontaneous Curvature Fluid Membrane Model

    Full text link
    An analytic solution for Helfrich spontaneous curvature membrane model (H. Naito, M.Okuda and Ou-Yang Zhong-Can, Phys. Rev. E {\bf 48}, 2304 (1993); {\bf 54}, 2816 (1996)), which has a conspicuous feature of representing the circular biconcave shape, is studied. Results show that the solution in fact describes a family of shapes, which can be classified as: i) the flat plane (trivial case), ii) the sphere, iii) the prolate ellipsoid, iv) the capped cylinder, v) the oblate ellipsoid, vi) the circular biconcave shape, vii) the self-intersecting inverted circular biconcave shape, and viii) the self-intersecting nodoidlike cylinder. Among the closed shapes (ii)-(vii), a circular biconcave shape is the one with the minimum of local curvature energy.Comment: 11 pages, 11 figures. Phys. Rev. E (to appear in Sept. 1999

    The ultrafast laser ablation of Li(Ni0.6_{0.6}Mn0.2_{0.2}Co0.2_{0.2})O2_{2} electrodes with high mass loading

    Get PDF
    Lithium-ion batteries have become the most promising energy storage devices in recent years. However, the simultaneous increase of energy density and power density is still a huge challenge. Ultrafast laser structuring of electrodes is feasible to increase power density of lithium-ion batteries by improving the lithium-ion diffusion kinetics. The influences of laser processing pattern and film thickness on the rate capability and energy density were investigated using Li(Ni0.6Mn0.2Co0.2)O2 (NMC 622) as cathode material. NMC 622 electrodes with thicknesses from 91 µm to 250 µm were prepared, while line patterns with pitch distances varying from 200 µm to 600 µm were applied. The NMC 622 cathodes were assembled opposing lithium using coin cell design. Cells with structured, 91 µm thick film cathodes showed lesser capacity losses with C-rates 3C compared to cells with unstructured cathode. Cells with 250 µm thick film cathode showed higher discharge capacity with low C-rates of up to C/5, and the structured cathodes showed higher discharge capacity, with C-rates of up to 1C. However, the discharge capacity deteriorated with higher C-rate. An appropriate choice of laser generated patterns and electrode thickness depends on the requested battery application scenario; i.e., charge/discharge rate and specific/volumetric energy density

    The EERA joint programme on energy storage

    Get PDF

    Arbitrarily slow, non-quasistatic, isothermal transformations

    Full text link
    For an overdamped colloidal particle diffusing in a fluid in a controllable, virtual potential, we show that arbitrarily slow transformations, produced by smooth deformations of a double-well potential, need not be reversible. The arbitrarily slow transformations do need to be fast compared to the barrier crossing time, but that time can be extremely long. We consider two types of cyclic, isothermal transformations of a double-well potential. Both start and end in the same equilibrium state, and both use the same basic operations---but in different order. By measuring the work for finite cycle times and extrapolating to infinite times, we found that one transformation required no work, while the other required a finite amount of work, no matter how slowly it was carried out. The difference traces back to the observation that when time is reversed, the two protocols have different outcomes, when carried out arbitrarily slowly. A recently derived formula relating work production to the relative entropy of forward and backward path probabilities predicts the observed work average.Comment: 6 pages, 6 figure

    TGRS Observations of Positron Annihilation in Classical Novae

    Get PDF
    The TGRS experiment on board the Wind spacecraft has many advantages as a sky monitor --- broad field of view (~2 pi) centered on the south ecliptic pole), long life (1994-present), and stable low background and continuous coverage due to Wind's high altitude high eccentricity orbit. The Ge detector has sufficient energy resolution (3-4 keV at 511 keV) to resolve a cosmic positron annihilation line from the strong background annihilation line from beta-decays induced by cosmic ray impacts on the instrument, if the cosmic line is Doppler-shifted by this amount. Such lines (blueshifted) are predicted from nucleosynthesis in classical novae. We have searched the entire TGRS database for 1995-1997 for this line, with negative results. In principle such a search could yield an unbiased upper limit on the highly-uncertain Galactic nova rate. We carefully examined the times around the known nova events during this period, also with negative results. The upper limit on the nova line flux in a 6-hr interval is typically <3.8 E-3 photon/(cm2 s) at 4.6 sigma. We performed the same analysis for times around the outburst of Nova Vel 1999, obtaining a worse limit due to recent degradation of the detector response caused by cosmic ray induced damage.Comment: 5 pp. inc. 3 figs. Proc. 5th Compton Symposium (AIP Conf. Series), ed. M. McConnell, in pres

    Complex Line Bundles over Simplicial Complexes and their Applications

    Get PDF
    Discrete vector bundles are important in Physics and recently found remarkable applications in Computer Graphics. This article approaches discrete bundles from the viewpoint of Discrete Differential Geometry, including a complete classification of discrete vector bundles over finite simplicial complexes. In particular, we obtain a discrete analogue of a theorem of Andr\'e Weil on the classification of hermitian line bundles. Moreover, we associate to each discrete hermitian line bundle with curvature a unique piecewise-smooth hermitian line bundle of piecewise constant curvature. This is then used to define a discrete Dirichlet energy which generalizes the well-known cotangent Laplace operator to discrete hermitian line bundles over Euclidean simplicial manifolds of arbitrary dimension
    • …
    corecore