9 research outputs found

    Translational Regenerative Therapies for Chronic Spinal Cord Injury

    No full text
    Spinal cord injury is a chronic and debilitating neurological condition that is currently being managed symptomatically with no real therapeutic strategies available. Even though there is no consensus on the best time to start interventions, the chronic phase is definitely the most stable target in order to determine whether a therapy can effectively restore neurological function. The advancements of nanoscience and stem cell technology, combined with the powerful, novel neuroimaging modalities that have arisen can now accelerate the path of promising novel therapeutic strategies from bench to bedside. Several types of stem cells have reached up to clinical trials phase II, including adult neural stem cells, human spinal cord stem cells, olfactory ensheathing cells, autologous Schwann cells, umbilical cord blood-derived mononuclear cells, adult mesenchymal cells, and autologous bone-marrow-derived stem cells. There also have been combinations of different molecular therapies; these have been either alone or combined with supportive scaffolds with nanostructures to facilitate favorable cell–material interactions. The results already show promise but it will take some coordinated actions in order to develop a proper step-by-step approach to solve impactful problems with neural repair

    Dysmenorrhoea: Can Medicinal Cannabis Bring New Hope for a Collective Group of Women Suffering in Pain, Globally?

    No full text
    Dysmenorrhoea effects up to 90% of women of reproductive age, with medical management options including over-the-counter analgesia or hormonal contraception. There has been a recent surge in medicinal cannabis research and its analgesic properties. This paper aims to critically investigate the current research of medicinal cannabis for pain relief and to discuss its potential application to treat dysmenorrhoea. Relevant keywords, including medicinal cannabis, pain, cannabinoids, tetrahydrocannabinol, dysmenorrhoea, and clinical trial, have been searched in the PubMed, EMBASE, MEDLINE, Google Scholar, Cochrane Library (Wiley) databases and a clinical trial website (clinicaltrials.gov). To identify the relevant studies for this paper, 84 papers were reviewed and 20 were discarded as irrelevant. This review critically evaluated cannabis-based medicines and their mechanism and properties in relation to pain relief. It also tabulated all clinical trials carried out investigating medicinal cannabis for pain relief and highlighted the side effects. In addition, the safety and toxicology of medicinal cannabis and barriers to use are highlighted. Two-thirds of the clinical trials summarised confirmed positive analgesic outcomes, with major side effects reported as nausea, drowsiness, and dry mouth. In conclusion, medicinal cannabis has promising applications in the management of dysmenorrhoea. The global medical cannabis market size was valued at USD 11.0 billion in 2021 and is expected to expand at a compound annual growth rate (CAGR) of 21.06% from 2022 to 2030. This will encourage academic as well as the pharmaceutical and medical device industries to study the application of medical cannabis in unmet clinical disorders

    Stem cell tracking using iron oxide nanoparticles

    Get PDF
    Superparamagnetic iron oxide nanoparticles (SPIONs) are an exciting advancement in the field of nanotechnology. They expand the possibilities of noninvasive analysis and have many useful properties, making them potential candidates for numerous novel applications. Notably, they have been shown that they can be tracked by magnetic resonance imaging (MRI) and are capable of conjugation with various cell types, including stem cells. In-depth research has been undertaken to establish these benefits, so that a deeper level of understanding of stem cell migratory pathways and differentiation, tumor migration, and improved drug delivery can be achieved. Stem cells have the ability to treat and cure many debilitating diseases with limited side effects, but a main problem that arises is in the noninvasive tracking and analysis of these stem cells. Recently, researchers have acknowledged the use of SPIONs for this purpose and have set out to establish suitable protocols for coating and attachment, so as to bring MRI tracking of SPION-labeled stem cells into common practice. This review paper explains the manner in which SPIONs are produced, conjugated, and tracked using MRI, as well as a discussion on their limitations. A concise summary of recently researched magnetic particle coatings is provided, and the effects of SPIONs on stem cells are evaluated, while animal and human studies investigating the role of SPIONs in stem cell tracking will be explored

    Multifunctional and Self-Healable Intelligent Hydrogels for Cancer Drug Delivery and Promoting Tissue Regeneration In Vivo

    No full text
    Regenerative medicine seeks to assess how materials fundamentally affect cellular functions to improve retaining, restoring, and revitalizing damaged tissues and cancer therapy. As potential candidates in regenerative medicine, hydrogels have attracted much attention due to mimicking of native cell-extracellular matrix (ECM) in cell biology, tissue engineering, and drug screening over the past two decades. In addition, hydrogels with a high capacity for drug loading and sustained release profile are applicable in drug delivery systems. Recently, self-healing supramolecular hydrogels, as a novel class of biomaterials, are being used in preclinical trials with benefits such as biocompatibility, native tissue mimicry, and injectability via a reversible crosslink. Meanwhile, the localized therapeutics agent delivery is beneficial due to the ability to deliver more doses of therapeutic agents to the targeted site and the ability to overcome post-surgical complications, inflammation, and infections. These highly potential materials can help address the limitations of current drug delivery systems and the high clinical demand for customized drug release systems. To this aim, the current review presents the state-of-the-art progress of multifunctional and self-healable hydrogels for a broad range of applications in cancer therapy, tissue engineering, and regenerative medicine

    List of Contributors

    No full text
    corecore