5 research outputs found

    Preliminary Identification, Analysis, and Classification of Odor-Causing Mechanisms Influenced by Decreasing Salinity of the Great Salt Lake

    Get PDF
    Introduction: The rising level of the Great Salt Lake has received a great deal of attention because of the resulting physical damage to adjoining properties, threatened distruption of major transportation facilities, and environmental damage to feeding and resting areas for migratory waterfowl. Another problem of growing concern is that some zones of the lake are producing odors that are objectionable to nearby populated areas. These odors are most offensive during the warm summer months and appear to be increasing with the rising levels and decreasing salinity of the lake water. This report presents the approach taken and the findings of a short-term investigation completed by the Utah Water Research Laboratory to determine the sources and mechanisms causing the odor. At the outset of the study, it was hypothesized that the odors come from one or more of the following sources: 1) bottom sediments which contain municipal and agricultural seqage residues and industrial wastes; 2) decay of algal blooms and the organic material produced by the algae; 3) decaying vegetative matter on land areas that have only recently been inundated by the rising water of the lake; and 4) decaying pupae cases of brine flies. The first tree of these were investigated briefly in the laboratory using lake water and sediment samples. Information on brine flies was derived from the literature from numerous studies taht have been made during recent years

    Evaluation of the Potential for Groundwater Transport of Mutagenic Compounds Released by Spent Oil Shale

    Get PDF
    The major focus of this study was on the potential mutagenicity of aqueous leachates from spent oil shale. Additional mutagenicity testing was also done on raw shale and coal. The Ames salmonella microsomal bioassay was used to test for chemical mutagenicity. Spent oil sahles from the Paraho and TOSCO II processes, a raw shale from Anvil Points, and a composite coal sample from the Wasatch plateau were extracted with water and organic solvents. Only organic solvent extraction of the TOSCO spent shale resulted in a mutagenic response. The lack of mutgenic reponse to organic extracts of Paraho spent shale was unexpected and was probably due to higher than typical temperatures at which it had been retorted. Using TOSCO spent shale leachate and the organically extracted mutagen, a partition relationship between the spent shale and leachate water was developed. The mutagen was found to have a fairly high affinity for spent shale. Based on this it was estimated that mutagenicity of the TOSCO spent shale leachate will be low (in the range of chlorinated wastewater), however it will require many pore volumes to leach out of a pile potentially resulting in a chronic long-term problem

    Expected Effects of In-Lake Dikes on Water Levels and Quality in the Farmington Bay and the East Shore Areas of the Great Salt Lake, Utah

    Get PDF
    Introduction: The Great Salt Lake is a terminal lake and as such is one of the major inland bodies of salt water in the world, and the largest lake of brine in the western hemisphere. Its unique features, including its mineral rich waters and interesting shores and islands, make it appealing to both industry and vacationers. Until recently, some of the great waterfowl sanctuaries in the U.S. existed along the easterly and northerly shores of the lake. However, during the past three years record breaking inflow volumes and lower than normal evaporation rates have caused an unprecidented rate of rise in the elevation of the lake surface. The rising water already have caused extensive damages to both public and private properties, including raods, highways, railroads, hunting club facilities, mineral extraction facilities, waterfowl areas, home, water treatment facilities, and agricultural lands. For example, the Southern Pacific Railroad Company has spent many millions of dollars raising the level of the causeway which crosses the lake between Promontory Point and Lakeside on the western shore, and a causeway which was constructed by the State ro provide access to a State park on the northern tip of Antelope Island now stands under approximately three feet of water. Continued increases in the lake level would create further damage to homes, transportation links (including the Salt Lake City International Airport), lakeside industries, and recreation facilities. In order to reduce future damages from the rising waters of the lake, various diking options, among other alternative flood control possibilities, are being considered by the State. Some of the diking options were addressed in a recent feasibility-level engineering study completed by James M. Montgomery, Consulting Engineering, Inc., and a team of sub-consultants (Montgomery 1984). The study evaluates several on-shore (or perimeter) diking altneratives to protect specific facilities, such as waste-water treatment plants. In addition, the study looks at some in-lake diking alternatives which provide certain management options by compartmentalizing the lake. In-lake diking options presented by the Montogmery study included various configurations between points on the wast shore of the lake and the Antelope and Fremont Islands. As might be expected, the Montgomery study shows that the in-lake dikes, although more comprehensive (less selective) in the protection provided, are consideraly more costly both to construct and to maintain than perimeter dikes for the same area. Various possible perimeter dike configurations to protect properties on the east shore are discussed by the Montgomery reoprt. The costs of these structures are compared with the much higher costs for in-like dikes needed to protect the same properties. However, the report, by design, addreses the in-lake dikes purely from a flood protection point of view and does not consider other possible advantages of in-lake diking, including: 1. Possible freshening of the waters in areas enclosed by dikes along the east shoreline to enhance boating and swimming and to enable these waters to be used for irrigation, municipal, and industrial purposes. 2. Capabilities to manage the levels of the water adjacent to the east shoreline in order to optimize conditions for waterfowl santuaries. 3. Providing road access to the Antelope Island State Park, and even the possibilitiy of an additional north-south transportation route by-passing Salt Lake City. East of these three issues needs careful study to evaluate the potential physical and economic impacts. For example, a study of items (1) and (2) should address questions such as: (a) Can water in the impounded areas be freshened sufficiently to permit its use for boating and swimming, irrigation, and/or municipal and industrial purposes? (b) To waht extent will freshening create odors (anaerobic conditions), promote algae growth, and cause other water quality problems within the impounded areas? (c) Will regulation to maintain water and salinity levels suitable for waterfowl habitat preclude other uses such as boating and swimming, irrigation, and/or municipal and industrial

    The Evaluation of Metals and Other Substances Released into Coal Mine Accrual Waters on the Wasatch Plateau Coal Field, Utah

    Get PDF
    Six sites on the Wasatch Plateau were chosen representing subsurface coal mines which were discharging or collecting accrual water on this coal field. Water samples were collected monthly at these sites for a period of 1 year (May 1981 to April 1982). Samples were taken before and after each mine\u27s treatment system. Water sampels were analyzed for major anions and cations, trace metals, physical properaties, nutrients, total organic carbon, oil and grease, trihalomethanes, and algal assay. Predictions were made as to the possible effects these coal mine accrual waters would have when used for drinking water, irrigation water, stock and wildlife watering, and as discharges into freshwater aquatic ecosystems. Compliance of the mine water discharges with NPDES regulations was also noted. Crushed coal samples were obtained from each of the six mine sites and evaluated with regard to their leaching characteristics in laboratory upflow leaching columns using an aqueous leaching medium characteristic of the area\u27s water supplies. Leachate samples were anlyzed for major anions and cations, trace metals, physical properaties, and total organic carbon. laboratory leaching characteristics were compared to the chemical nature of the actual mine water discharges. Mine water discharges were not found to be acidic in nature, the values for most parameters monitored during the field and laboratory portions of the study fell below the toxicity criteria for uses mentioned above, and were generally in compliance with NPDES regulations. Boron was present in the mine waters, but at levels which would be predicted to cause only minor or no damage to the most sensitive crops. The drinking water limit and the freshwater aquatic life bioaccumulation criterion for mercury were exceeded on several occasions in the coal mine accrual waters sampled. A comprehensive study of fish tissue samples and water samples taken from bodies of water near coal mines is recommended. Total suspended solids (TSS) and oil and grease were among the most frequently violated parameters with regard to NPDES regulations. Further studies are recommended with regard to the effects of these substances on stream biota, their sources and their rate in aquatic ecosystems. Coal leaching trends in the laboratory column experiments pralleled many of the trends observed in the field data collected. Trends for pH, aluminum, arsenic, beryllium, cadmium, chromium, cobalt, copper, iron, lead, molybdenum, nickel, silver, zinc, boron, lithium, strontium, alkalinity, chloride, cluoride, potassium, sodium, and silica were generally consistent when these comparisons were made. Values for water hardness parameters were observed to be specific to the mine site involved and not always comparable to laboratory leachate column data. Generalizations with respect to leaching trends and origins of chemical substances in coal mine accrual waters must be made with caution due to the great potential variability in coal samples and the complexity of leaching phenomena

    Expected Effects of In-Lake Dikes on Water Levels and Quality in the Farmington Bay and the East Shore Areas of the Great Salt Lake, Utah (Executive Summary)

    Get PDF
    Introduction: The Great Salt Lake is a terminal lake and as such is one of the major inland bodies of salt water in the world, and the largest lake of brine in the western hemisphere. Its unique features, including its mineral rich waters and interesting shores and islands, make it appealing to both industry and vacationers. Until recently, some of the great waterfowl sanctuaries in the U.S. existed along the easterly and northerly shores of the lake. However, during the past three years record breaking inflow volumes and lower than normal evaporation rates have caused an unprecidented rate of rise in the elevation of the lake surface. The rising water already have caused extensive damages to both public and private properties, including raods, highways, railroads, hunting club facilities, mineral extraction facilities, waterfowl areas, home, water treatment facilities, and agricultural lands. For example, the Southern Pacific Railroad Company has spent many millions of dollars raising the level of the causeway which crosses the lake between Promontory Point and Lakeside on the western shore, and a causeway which was constructed by the State ro provide access to a State park on the northern tip of Antelope Island now stands under approximately three feet of water. Continued increases in the lake level would create further damage to homes, transportation links (including the Salt Lake City International Airport), lakeside industries, and recreation facilities. In order to reduce future damages from the rising waters of the lake, various diking options, among other alternative flood control possibilities, are being considered by the State. Some of the diking options were addressed in a recent feasibility-level engineering study completed by James M. Montgomery, Consulting Engineering, Inc., and a team of sub-consultants (Montgomery 1984). The study evaluates several on-shore (or perimeter) diking altneratives to protect specific facilities, such as waste-water treatment plants. In addition, the study looks at some in-lake diking alternatives which provide certain management options by compartmentalizing the lake. In-lake diking options presented by the Montogmery study included various configurations between points on the wast shore of the lake and the Antelope and Fremont Islands. As might be expected, the Montgomery study shows that the in-lake dikes, although more comprehensive (less selective) in the protection provided, are consideraly more costly both to construct and to maintain than perimeter dikes for the same area. Various possible perimeter dike configurations to protect properties on the east shore are discussed by the Montgomery reoprt. The costs of these structures are compared with the much higher costs for in-like dikes needed to protect the same properties. However, the report, by design, addreses the in-lake dikes purely from a flood protection point of view and does not consider other possible advantages of in-lake diking, including: 1. Possible freshening of the waters in areas enclosed by dikes along the east shoreline to enhance boating and swimming and to enable these waters to be used for irrigation, municipal, and industrial purposes. 2. Capabilities to manage the levels of the water adjacent to the east shoreline in order to optimize conditions for waterfowl santuaries. 3. Providing road access to the Antelope Island State Park, and even the possibilitiy of an additional north-south transportation route by-passing Salt Lake City. East of these three issues needs careful study to evaluate the potential physical and economic impacts. For example, a study of items (1) and (2) should address questions such as: (a) Can water in the impounded areas be freshened sufficiently to permit its use for boating and swimming, irrigation, and/or municipal and industrial purposes? (b) To waht extent will freshening create odors (anaerobic conditions), promote algae growth, and cause other water quality problems within the impounded areas? (c) Will regulation to maintain water and salinity levels suitable for waterfowl habitat preclude other uses such as boating and swimming, irrigation, and/or municipal and industrial
    corecore