16 research outputs found

    PPP2R5C couples hepatic glucose and lipid homeostasis

    Get PDF
    In mammals, the liver plays a central role in maintaining carbohydrate and lipid homeostasis by acting both as a major source and a major sink of glucose and lipids. In particular, when dietary carbohydrates are in excess, the liver converts them to lipids via de novo lipogenesis. The molecular checkpoints regulating the balance between carbohydrate and lipid homeostasis, however, are not fully understood. Here we identify PPP2R5C, a regulatory subunit of PP2A, as a novel modulator of liver metabolism in postprandial physiology. Inactivation of PPP2R5C in isolated hepatocytes leads to increased glucose uptake and increased de novo lipogenesis. These phenotypes are reiterated in vivo, where hepatocyte specific PPP2R5C knockdown yields mice with improved systemic glucose tolerance and insulin sensitivity, but elevated circulating triglyceride levels. We show that modulation of PPP2R5C levels leads to alterations in AMPK and SREBP-1 activity. We find that hepatic levels of PPP2R5C are elevated in human diabetic patients, and correlate with obesity and insulin resistance in these subjects. In sum, our data suggest that hepatic PPP2R5C represents an important factor in the functional wiring of energy metabolism and the maintenance of a metabolically healthy state

    Molecular regulation of urea cycle function by the liver glucocorticoid receptor

    No full text
    Objective: One of the major side effects of glucocorticoid (GC) treatment is lean tissue wasting, indicating a prominent role in systemic amino acid metabolism. In order to uncover a novel aspect of GCs and their intracellular-receptor, the glucocorticoid receptor (GR), on metabolic control, we conducted amino acid and acylcarnitine profiling in human and mouse models of GC/GR gain- and loss-of-function. Methods: Blood serum and tissue metabolite levels were determined in Human Addison's disease (AD) patients as well as in mouse models of systemic and liver-specific GR loss-of-function (AAV-miR-GR) with or without dexamethasone (DEX) treatments. Body composition and neuromuscular and metabolic function tests were conducted in vivo and ex vivo, the latter using precision cut liver slices. Results: A serum metabolite signature of impaired urea cycle function (i.e. higher [ARG]:[ORN + CIT]) was observed in human (CTRL: 0.45 ± 0.03, AD: 1.29 ± 0.04; p < 0.001) and mouse (AAV-miR-NC: 0.97 ± 0.13, AAV-miR-GR: 2.20 ± 0.19; p < 0.001) GC/GR loss-of-function, with similar patterns also observed in liver. Serum urea levels were consistently affected by GC/GR gain- (∼+32%) and loss (∼−30%) -of-function. Combined liver-specific GR loss-of-function with DEX treatment revealed a tissue-autonomous role for the GR to coordinate an upregulation of liver urea production rate in vivo and ex vivo, and prevent hyperammonaemia and associated neuromuscular dysfunction in vivo. Liver mRNA expression profiling and GR-cistrome mining identified Arginase I (ARG1) a urea cycle gene targeted by the liver GR. Conclusions: The liver GR controls systemic and liver urea cycle function by transcriptional regulation of ARG1 expression

    PPP2R5C couples hepatic glucose and lipid homeostasis

    No full text
    In mammals, the liver plays a central role in maintaining carbohydrate and lipid homeostasis by acting both as a major source and a major sink of glucose and lipids. In particular, when dietary carbohydrates are in excess, the liver converts them to lipids via de novo lipogenesis. The molecular checkpoints regulating the balance between carbohydrate and lipid homeostasis, however, are not fully understood. Here we identify PPP2R5C, a regulatory subunit of PP2A, as a novel modulator of liver metabolism in postprandial physiology. Inactivation of PPP2R5C in isolated hepatocytes leads to increased glucose uptake and increased de novo lipogenesis. These phenotypes are reiterated in vivo, where hepatocyte specific PPP2R5C knockdown yields mice with improved systemic glucose tolerance and insulin sensitivity, but elevated circulating triglyceride levels. We show that modulation of PPP2R5C levels leads to alterations in AMPK and SREBP-1 activity. We find that hepatic levels of PPP2R5C are elevated in human diabetic patients, and correlate with obesity and insulin resistance in these subjects. In sum, our data suggest that hepatic PPP2R5C represents an important factor in the functional wiring of energy metabolism and the maintenance of a metabolically healthy state

    PPP2R5C couples hepatic glucose and lipid homeostasis

    No full text
    In mammals, the liver plays a central role in maintaining carbohydrate and lipid homeostasis by acting both as a major source and a major sink of glucose and lipids. In particular, when dietary carbohydrates are in excess, the liver converts them to lipids via de novo lipogenesis. The molecular checkpoints regulating the balance between carbohydrate and lipid homeostasis, however, are not fully understood. Here we identify PPP2R5C, a regulatory subunit of PP2A, as a novel modulator of liver metabolism in postprandial physiology. Inactivation of PPP2R5C in isolated hepatocytes leads to increased glucose uptake and increased de novo lipogenesis. These phenotypes are reiterated in vivo, where hepatocyte specific PPP2R5C knockdown yields mice with improved systemic glucose tolerance and insulin sensitivity, but elevated circulating triglyceride levels. We show that modulation of PPP2R5C levels leads to alterations in AMPK and SREBP-1 activity. We find that hepatic levels of PPP2R5C are elevated in human diabetic patients, and correlate with obesity and insulin resistance in these subjects. In sum, our data suggest that hepatic PPP2R5C represents an important factor in the functional wiring of energy metabolism and the maintenance of a metabolically healthy state

    TSC22D4 is a molecular output of hepatic wasting metabolism

    Get PDF
    In mammals, proper storage and distribution of lipids in and between tissues is essential for the maintenance of energy homeostasis. Here, we show that tumour growth triggers hepatic metabolic dysfunction as part of the cancer cachectic phenotype, particularly by reduced hepatic very-low-density-lipoprotein (VLDL) secretion and hypobetalipoproteinemia. As a molecular cachexia output pathway, hepatic levels of the transcription factor transforming growth factor beta 1-stimulated clone (TSC) 22 D4 were increased in cancer cachexia. Mimicking high cachectic levels of TSC22D4 in healthy livers led to the inhibition of hepatic VLDL release and lipogenic genes, and diminished systemic VLDL levels under both normal and high fat dietary conditions. Liver-specific ablation of TSC22D4 triggered hypertriglyceridemia through the induction of hepatic VLDL secretion. Furthermore, hepatic TSC22D4 expression levels were correlated with the degree of body weight loss and VLDL hypo-secretion in cancer cachexia, and TSC22D4 deficiency rescued tumour cell-induced metabolic dysfunction in hepatocytes. Therefore, hepatic TSC22D4 activity may represent a molecular rationale for peripheral energy deprivation in subjects with metabolic wasting diseases, including cancer cachexi

    microRNA-379 couples glucocorticoid hormones to dysfunctional lipid homeostasis

    No full text
    In mammals, glucocorticoids (GCs) and their intracellular receptor, the glucocorticoid receptor (GR), represent critical checkpoints in the endocrine control of energy homeostasis. Indeed, aberrant GC action is linked to severe metabolic stress conditions as seen in Cushing's syndrome, GC therapy and certain components of the Metabolic Syndrome, including obesity and insulin resistance. Here, we identify the hepatic induction of the mammalian conserved microRNA (miR)-379/410 genomic cluster as a key component of GC/GR-driven metabolic dysfunction. Particularly, miR-379 was up-regulated in mouse models of hyperglucocorticoidemia and obesity as well as human liver in a GC/GR-dependent manner. Hepatocyte-specific silencing of miR-379 substantially reduced circulating very-low-density lipoprotein (VLDL)-associated triglyceride (TG) levels in healthy mice and normalized aberrant lipid profiles in metabolically challenged animals, mediated through miR-379 effects on key receptors in hepatic TG re-uptake. As hepatic miR-379 levels were also correlated with GC and TG levels in human obese patients, the identification of a GC/GR-controlled miRNA cluster not only defines a novel layer of hormone-dependent metabolic control but also paves the way to alternative miRNA-based therapeutic approaches in metabolic dysfunctio

    PPP2R5C HepKD in <i>db/db</i> mouse liver improves insulin sensitivity, decreases hyperglycemia, but worsens the dyslipidemia.

    No full text
    <p><b>(A)</b> Hyperglycemia in <i>db/db</i> mice is decreased upon hypatocyte-specific PPP2R5C knockdown with adeno-associated virus. After 5 weeks knockdown, <i>db/db</i> mice were sacrificed under <i>ad libitum</i> feeding with normal chow diet. Blood glucose was monitored at each week, week 0 was one day before virus injection (n = 6). <b>(B)</b> Insulin tolerance test shows improved insulin sensitivity in PPP2R5C knockdown <i>db/db</i> mice at week 4 after virus injection (1.5IU/kg insulin was tail-injected after 6 hour fasting) (n = 6). <b>(C-F)</b> PPP2R5C HepKD in <i>db/db</i> mice increases body weight (C), whole body fat content (D), and liver weight (E), without changing abdominal adipose tissue weight (Abd.WAT) (F) (n = 6). Error bars: std. dev. *p-value<0.05 and **p-value<0.01 by student t-test (D-E). p-value in the (A-C) was calculated by two-way ANOVA.</p

    Hepatocyte-specific knockdown of PPP2R5C leads to increased lipogenesis and lipid secretion.

    No full text
    <p><b>(A-C)</b> Liver-specific knockdown of PPP2R5C leads to pro-anabolic changes including increased liver lipid synthesis and secretion and reduced glycogen breakdown. As in <a href="http://www.plosgenetics.org/article/info:doi/10.1371/journal.pgen.1005561#pgen.1005561.g002" target="_blank">Fig 2</a>, 7 weeks post hepatocyte-specific knockdown, liver weight (A), glycogen (B) and triglycerides (C) were quantified. (n = 5 or 6) <b>(D-E)</b> Cellular triglyceride levels are increased in Hepa 1–6 (D) or mouse primary hepatocytes (E) upon PPP2R5C knockdown. Cells infected as in <a href="http://www.plosgenetics.org/article/info:doi/10.1371/journal.pgen.1005561#pgen.1005561.g002" target="_blank">Fig 2</a>. (n = 3) (<b>F-G</b>) Liver-specific knockdown of PPP2R5C leads to elevated serum VLDL levels. 7 weeks post hepatocyte-specific knockdown, serum triglycerides were quantified either in aggregate (F), or when fractionated by FPLC to resolve lipoprotein particles of various densities (G). (n = 5 or 6) Error bars: std. dev. *p-value<0.05, **p-value<0.01 by one-way ANCOVA with liver NEFA as a covariate (C, “Random”) or student t-test (A-F).</p

    PPP2R5C expression in human liver correlates with insulin resistance.

    No full text
    <p><b>(A)</b> Expression of PPP2R5C is elevated in livers of diabetic patients. Quantitative RT-PCR of Human PPP2R5C in liver of healthy controls (n = 40) or type 2 diabetic patients (n = 26), normalized to 18S rRNA. <b>(B)</b> Expression of PPP2R5C is elevated in non-diabetics with visceral obesity. People enrolled in the analysis were divided into 3 subgroups according to their adiposity: Lean (n = 12), Subcutaneous (“SC”) Obesity (n = 21) and Visceral (“VIS”) Obesity (n = 7). <b>(C)</b> Expression of PPP2R5C inversely correlates with insulin sensitivity. Pearson correlation analysis was done for PPP2R5C expression levels and glucose infusion rate (GIR) during hyperinsulemic-euglycemic clamp. **p-value<0.01, ***p-value<0.001 by student t-test (A-B).</p

    Expression of PPP2R5C is nutritionally regulated in metabolically relevant tissues.

    No full text
    <p>(A-C) mRNA levels of PPP2R5C are nutritionally regulated in various mouse tissues. Quantitative RT-PCR of PPP2R5C (NCBI splice variant 4) from liver (A), abdominal white adipose tissue (B) and gastrocnemius muscle (C) of control C57BL/6 (“WT”) or diabetic leptin-receptor deficient (“db/db”) 8–10 week old male mice. Mice were first starved for 16 hours (“Fasting”) and then given normal chow diet for 6 hours (“Refed”). Error bars: std. dev. *p-value<0.05, **p-value<0.01, ***p-value<0.001 by student t-test (n ≥ 3).</p
    corecore