2 research outputs found

    Nivolumab after Induction Chemotherapy in Previously Treated Non-Small-Cell Lung Cancer Patients with Low PD-L1 Expression

    No full text
    This study aimed to investigate whether cyclophosphamide (C) and adriamycin (A) induction therapy (IT) prior to nivolumab could enhance the efficacy of nivolumab in previously treated patients with non-squamous (NSQ) non-small-cell lung cancer (NSCLC) with less than 10% programmed death-ligand 1 (PD-L1) expression. Twenty-two enrolled patients received four cycles of CA-IT every 3 weeks. Nivolumab was given 360 mg every 3 weeks from the second cycle and 480 mg every 4 weeks after four cycles of CA-IT. The median progression-free survival (PFS) and overall survival (OS) were 2.4 months and 11.6 months, respectively. Fluorescence-activated cell sorting revealed the lowest ratio of myeloid-derived suppressor cells (MDSCs) to CD8+T-cells in the responders. Proteomic analysis identified a consistent upregulation of extracellular matrix-receptor interactions and phagosome pathways in the responders. Among the differentially expressed proteins, the transferrin receptor protein (TFRC) was higher in the responders before treatment (fold change > 1.2). TFRC validation with an independent cohort showed the prognostic significance of either OS or PFS in patients with low PD-L1 expression. In summary, CA-IT did not improve nivolumab efficacy in NSQ-NSCLCs with low PD-L1 expression; however, it induced decreasing MDSC, resulting in a durable response. Higher baseline TFRC levels predicted a favorable response to nivolumab in NSCLC with low PD-L1 expression

    Drug Response of Patient-Derived Lung Cancer Cells Predicts Clinical Outcomes of Targeted Therapy

    No full text
    Intratumor heterogeneity leads to different responses to targeted therapies, even within patients whose tumors harbor identical driver oncogenes. This study examined clinical outcomes according to a patient-derived cell (PDC)-based drug sensitivity test in lung cancer patients treated with targeted therapies. From 487 lung cancers, 397 PDCs were established with a success rate of 82%. In 139 PDCs from advanced non-small-cell lung cancer (NSCLC) patients receiving targeted therapies, the standardized area under the curve (AUC) values for the drugs was significantly correlated with their tumor response (p = 0.002). Among 59 chemo-naive EGFR/ALK-positive NSCLC patients, the PDC non-responders showed a significantly inferior response rate (RR) and progression-free survival (PFS) for the targeted drugs than the PDC responders (RR, 25% vs. 78%, p = 0.011; median PFS, 3.4 months [95% confidence interval (CI), 2.8–4.1] vs. 11.8 months [95% CI, 6.5–17.0], p < 0.001). Of 25 EGFR-positive NSCLC patients re-challenged with EGFR inhibitors, the PDC responder showed a higher RR than the PDC non-responder (42% vs. 15%). Four patients with wild-type EGFR or uncommon EGFR-mutant NSCLC were treated with EGFR inhibitors based on their favorable PDC response to EGFR inhibitors, and two patients showed dramatic responses. Therefore, the PDC-based drug sensitivity test results were significantly associated with clinical outcomes in patients with EGFR- or ALK-positive NSCLC. It may be helpful for predicting individual heterogenous clinical outcomes beyond genomic alterations
    corecore