4 research outputs found

    Computerized electrocardiogram data transformation enables effective algorithmic differentiation of wide QRS complex tachycardias

    Get PDF
    BACKGROUND: Accurate automated wide QRS complex tachycardia (WCT) differentiation into ventricular tachycardia (VT) and supraventricular wide complex tachycardia (SWCT) can be accomplished using calculations derived from computerized electrocardiogram (ECG) data of paired WCT and baseline ECGs. OBJECTIVE: Develop and trial novel WCT differentiation approaches for patients with and without a corresponding baseline ECG. METHODS: We developed and trialed WCT differentiation models comprised of novel and previously described parameters derived from WCT and baseline ECG data. In Part 1, a derivation cohort was used to evaluate five different classification models: logistic regression (LR), artificial neural network (ANN), Random Forests [RF], support vector machine (SVM), and ensemble learning (EL). In Part 2, a separate validation cohort was used to prospectively evaluate the performance of two LR models using parameters generated from the WCT ECG alone (Solo Model) and paired WCT and baseline ECGs (Paired Model). RESULTS: Of the 421 patients of the derivation cohort (Part 1), a favorable area under the receiver operating characteristic curve (AUC) by all modeling subtypes: LR (0.96), ANN (0.96), RF (0.96), SVM (0.96), and EL (0.97). Of the 235 patients of the validation cohort (Part 2), the Solo Model and Paired Model achieved a favorable AUC for 103 patients with (Solo Model 0.87; Paired Model 0.95) and 132 patients without (Solo Model 0.84; Paired Model 0.95) a corroborating electrophysiology procedure or intracardiac device recording. CONCLUSION: Accurate WCT differentiation may be accomplished using computerized data of (i) the WCT ECG alone and (ii) paired WCT and baseline ECGs

    Artificial Intelligence for the Detection and Treatment of Atrial Fibrillation

    Get PDF
    AF is the most common clinically relevant cardiac arrhythmia associated with multiple comorbidities, cardiovascular complications (e.g. stroke) and increased mortality. As artificial intelligence (AI) continues to transform the practice of medicine, this review article highlights specific applications of AI for the screening, diagnosis and treatment of AF. Routinely used digital devices and diagnostic technology have been significantly enhanced by these AI algorithms, increasing the potential for large-scale population-based screening and improved diagnostic assessments. These technologies have similarly impacted the treatment pathway of AF, identifying patients who may benefit from specific therapeutic interventions. While the application of AI to the diagnostic and therapeutic pathway of AF has been tremendously successful, the pitfalls and limitations of these algorithms must be thoroughly considered. Overall, the multifaceted applications of AI for AF are a hallmark of this emerging era of medicine

    Contemporary trends and barriers to oral anticoagulation therapy in Non-valvular atrial fibrillation during DOAC predominant era

    No full text
    There is a need to reassess contemporary oral anticoagulation (OAC) trends and barriers against guideline directed therapy in the United States. Most previous studies were performed before major guideline changes recommended direct oral anticoagulant (DOAC) use over warfarin or have otherwise lacked patient level data. Data on overuse of OAC in low-risk group is also limited. To address these knowledge gaps, we performed a nationwide analysis to analyze current trends. This is a retrospective cohort study assessing non-valvular AF identified using a large United States de-identified administrative claims database, including commercial and Medicare Advantage enrollees. Prescription fills were assessed within a 90-day follow-up from the patient’s index AF encounter between January 1, 2016, and December 31, 2020. Among the 339,197 AF patients, 4.4%, 8.0%, and 87.6% were in the low-, moderate-, and high-risk groups (according to CHA2DS2-VASc score). An over (29.6%) and under (52.2%) utilization of OAC was reported in low- and high-risk AF patients. A considerably high frequency for warfarin use was also noted among high-risk group patients taking OAC (33.1%). The results suggest that anticoagulation use for stroke prevention in the United States is still comparable to the pre-DOAC era studies. About half of newly diagnosed high-risk non-valvular AF patients remain unprotected against stroke risk. Several predictors of OAC and DOAC use were also identified. Our findings may identify a population at risk of complications due to under- or over-treatment and highlight the need for future quality improvement efforts
    corecore