2,149 research outputs found
Investigation of nose bluntness and angle of attack effects on slender bodies in viscous hypersonic flows
Hypersonic flows over cones and straight biconic configurations are calculated for a wide range of free stream conditions in which the gas behind the shock is treated as perfect. Effect of angle of attack and nose bluntness on these slender cones in air is studied extensively. The numerical procedures are based on the solution of complete Navier-Stokes equations at the nose section and parabolized Navier-Stokes equations further downstream. The flow field variables and surface quantities show significant differences when the angle of attack and nose bluntness are varied. The complete flow field is thoroughly analyzed with respect to velocity, temperature, pressure, and entropy profiles. The post shock flow field is studied in detail from the contour plots of Mach number, density, pressure, and temperature. The effect of nose bluntness for slender cones persists as far as 200 nose radii downstream
CMB Lensing Power Spectrum Biases from Galaxies and Clusters using High-angular Resolution Temperature Maps
The lensing power spectrum from cosmic microwave background (CMB) temperature
maps will be measured with unprecedented precision with upcoming experiments,
including upgrades to ACT and SPT. Achieving significant improvements in
cosmological parameter constraints, such as percent level errors on sigma_8 and
an uncertainty on the total neutrino mass of approximately 50 meV, requires
percent level measurements of the CMB lensing power. This necessitates tight
control of systematic biases. We study several types of biases to the
temperature-based lensing reconstruction signal from foreground sources such as
radio and infrared galaxies and the thermal Sunyaev-Zel'dovich effect from
galaxy clusters. These foregrounds bias the CMB lensing signal due to their
non-Gaussian nature. Using simulations as well as some analytical models we
find that these sources can substantially impact the measured signal if left
untreated. However, these biases can be brought to the percent level if one
masks galaxies with fluxes at 150 GHz above 1 mJy and galaxy clusters with
masses above M_vir = 10^14 M_sun. To achieve such percent level bias, we find
that only modes up to a maximum multipole of l_max ~ 2500 should be included in
the lensing reconstruction. We also discuss ways to minimize additional bias
induced by such aggressive foreground masking by, for example, exploring a
two-step masking and in-painting algorithm.Comment: 14 pages, 14 figures, to be submitted to Ap
Evidence for Non-Hydrostatic Gas from the Cluster X-ray to Lensing Mass Ratio
Using a uniform analysis procedure, we measure spatially resolved weak
gravitational lensing and hydrostatic X-ray masses for a sample of 18 clusters
of galaxies. We find a radial trend in the X-ray to lensing mass ratio: at
r2500 we obtain a ratio MX/ML=1.03+/-0.07 which decreases to MX/ML=0.78+/-0.09
at r500. This difference is significant at 3 sigma once we account for
correlations between the measurements. We show that correcting the lensing mass
for excess correlated structure outside the virial radius slightly reduces, but
does not eliminate this trend. An X-ray mass underestimate, perhaps due to
nonthermal pressure support, can explain the residual trend. The trend is not
correlated with the presence or absence of a cool core. We also examine the
cluster gas fraction and find no correlation with ML, an important result for
techniques that aim to determine cosmological parameters using the gas
fraction.Comment: 8 pages, minor modifications, accepted for publication in MNRA
Building a high-quality sense inventory for improved abbreviation disambiguation
Motivation: The ultimate goal of abbreviation management is to disambiguate every occurrence of an abbreviation into its expanded form (concept or sense). To collect expanded forms for abbreviations, previous studies have recognized abbreviations and their expanded forms in parenthetical expressions of bio-medical texts. However, expanded forms extracted by abbreviation recognition are mixtures of concepts/senses and their term variations. Consequently, a list of expanded forms should be structured into a sense inventory, which provides possible concepts or senses for abbreviation disambiguation
Shock Breakout in Core-Collapse Supernovae and its Neutrino Signature
(Abridged) We present results from dynamical models of core-collapse
supernovae in one spatial dimension, employing a newly-developed Boltzmann
neutrino radiation transport algorithm, coupled to Lagrangean hydrodynamics and
a consistent high-density nuclear equation of state. We focus on shock breakout
and its neutrino signature and follow the dynamical evolution of the cores of
11 M_sun, 15 M_sun, and 20 M_sun progenitors through collapse and the first 250
milliseconds after bounce. We examine the effects on the emergent neutrino
spectra, light curves, and mix of species of artificial opacity changes, the
number of energy groups, the weak magnetism/recoil corrections, nucleon-nucleon
bremsstrahlung, neutrino-electron scattering, and the compressibility of
nuclear matter. Furthermore, we present the first high-resolution look at the
angular distribution of the neutrino radiation field both in the
semi-transparent regime and at large radii and explore the accuracy with which
our tangent-ray method tracks the free propagation of a pulse of radiation in a
near vacuum. Finally, we fold the emergent neutrino spectra with the
efficiencies and detection processes for a selection of modern underground
neutrino observatories and argue that the prompt electron-neutrino breakout
burst from the next galactic supernova is in principle observable and usefully
diagnostic of fundamental collapse/supernova behavior. Though we are not in
this study focusing on the supernova mechanism per se, our simulations support
the theoretical conclusion (already reached by others) that spherical (1D)
supernovae do not explode when good physics and transport methods are employed.Comment: 16 emulateapj pages, plus 24 postscript figures, accepted to The
Astrophysical Journal; text revised; neutrino oscillation section expanded;
Fig. 22 correcte
On CP Asymmetries in Two-, Three- and Four-Body D Decays
Indirect and direct CP violations have been established in K_L and B_d
decays. They have been found in two-body decay channels -- with the exception
of K_L to pi^+ pi^- e^+ e^- transitions. Evidence for direct CP asymmetry has
just appeared in LHCb data on A_{CP}(D^0 to K^+ K^-) - A_{CP}(D^0 to pi^+ pi^-)
with 3.5 sigma significance. Manifestations of New Dynamics (ND) can appear in
CP asymmetries just below experimental bounds. We discuss D^{\pm}_{(s)},
D^0/\bar D^0 and D_L/D_S transitions to 2-, 3- and 4-body final states with a
comment on predictions for inclusive vs. exclusive CP asymmetries. In
particular we discuss T asymmetries in D to h_1 h_2 l^+ l^- in analogy with K_L
to pi^+ pi^- e^+ e^- transitions due to interference between M1, internal
bremsstrahlung and possible E1 amplitudes. Such an effect depends on the
strength of CP violation originating from the ND -- as discussed here for
Little Higgs Models with T parity and non-minimal Higgs sectors -- but also in
the interferences between these amplitudes even in the Standard Model (SM).
More general lessons can be learnt for T asymmetries in non-leptonic D decays
like D to h_1h_2 h_3 h_4. Such manifestations of ND can be tested at LHCb and
other Super-Flavour Factories like the projects at KEK near Tokyo and at Tor
Vergata/Frascati near Rome.Comment: 27 pages, 6 figures. Revised with current results from LHCb and HFAG
and further interpretation
Community interventions with women's groups to improve women's and children's health in India: a mixed-methods systematic review of effects, enablers and barriers
Introduction: India is home to over 6 million womenâs
groups, including self-help groups. There has been no
evidence synthesis on whether and how such groups
improve womenâs and childrenâs health.
Methods: We did a mixed-methods systematic review of
quantitative and qualitative studies on womenâs groups
in India to examine effects on women and childrenâs
health and to identify enablers and barriers to achieving
outcomes. We searched 10 databases and included
studies published in English from 2000 to 2019 measuring
health knowledge, behaviours or outcomes. Our study
population included adult women and children under
5 years. We appraised studies using standard risk of bias
assessments. We compared intervention effects by level of
community participation, scope of capability strengthening
(individual, group or community), type of womenâs group
and social and behaviour change techniques employed. We
synthesised quantitative and qualitative studies to identify
barriers and enablers related to context, intervention
design and implementation, and outcome characteristics.
Findings: We screened 21 380 studies and included
99: 19 randomised controlled trial reports, 25 quasiexperimental study reports and 55 non-experimental
studies (27 quantitative and 28 qualitative). Experimental
studies provided moderate-quality evidence that health
interventions with womenâs groups can improve perinatal
practices, neonatal survival, immunisation rates and
womenâs and childrenâs dietary diversity, and help control
vector-borne diseases. Evidence of positive effects was
strongest for community mobilisation interventions that
built communitiesâ capabilities and went beyond sharing
information. Key enablers were inclusion of vulnerable
community members, outcomes that could be reasonably
expected to change through community interventions
and intensity proportionate to ambition. Barriers included
limited time or focus on health, outcomes not relevant to
group members and health system constraints.
Conclusion: Interventions with womenâs groups can
improve womenâs and childrenâs health in India. The
most effective interventions go beyond using groups
to disseminate health information and seek to build
communitiesâ capabilities
- âŠ