122 research outputs found

    Looking for signatures of sex-specific demography and local adaptation on the X chromosome

    Get PDF
    A genome-wide study of X chromosome genetic diversity in human populations shows the impact of social organization and local adaptation

    Blood ties: ABO is a trans-species polymorphism in primates

    Full text link
    The ABO histo-blood group, the critical determinant of transfusion incompatibility, was the first genetic polymorphism discovered in humans. Remarkably, ABO antigens are also polymorphic in many other primates, with the same two amino acid changes responsible for A and B specificity in all species sequenced to date. Whether this recurrence of A and B antigens is the result of an ancient polymorphism maintained across species or due to numerous, more recent instances of convergent evolution has been debated for decades, with a current consensus in support of convergent evolution. We show instead that genetic variation data in humans and gibbons as well as in Old World Monkeys are inconsistent with a model of convergent evolution and support the hypothesis of an ancient, multi-allelic polymorphism of which some alleles are shared by descent among species. These results demonstrate that the ABO polymorphism is a trans-species polymorphism among distantly related species and has remained under balancing selection for tens of millions of years, to date, the only such example in Hominoids and Old World Monkeys outside of the Major Histocompatibility Complex.Comment: 45 pages, 4 Figures, 4 Supplementary Figures, 5 Supplementary Table

    Elevated rates of horizontal gene transfer in the industrialized human microbiome

    Get PDF
    Industrialization has impacted the human gut ecosystem, resulting in altered microbiome composition and diversity. Whether bacterial genomes may also adapt to the industrialization of their host populations remains largely unexplored. Here, we investigate the extent to which the rates and targets of horizontal gene transfer (HGT) vary across thousands of bacterial strains from 15 human populations spanning a range of industrialization. We show that HGTs have accumulated in the microbiome over recent host generations and that HGT occurs at high frequency within individuals. Comparison across human populations reveals that industrialized lifestyles are associated with higher HGT rates and that the functions of HGTs are related to the level of host industrialization. Our results suggest that gut bacteria continuously acquire new functionality based on host lifestyle and that high rates of HGT may be a recent development in human history linked to industrialization.Peer reviewe

    World-wide distributions of lactase persistence alleles and the complex effects of recombination and selection

    Get PDF
    The genetic trait of lactase persistence (LP) is associated with at least five independent functional single nucleotide variants in a regulatory region about 14 kb upstream of the lactase gene [-13910*T (rs4988235), -13907*G (rs41525747), -13915*G (rs41380347), -14009*G (rs869051967) and -14010*C (rs145946881)]. These alleles have been inferred to have spread recently and present-day frequencies have been attributed to positive selection for the ability of adult humans to digest lactose without risk of symptoms of lactose intolerance. One of the inferential approaches used to estimate the level of past selection has been to determine the extent of haplotype homozygosity (EHH) of the sequence surrounding the SNP of interest. We report here new data on the frequencies of the known LP alleles in the 'Old World' and their haplotype lineages. We examine and confirm EHH of each of the LP alleles in relation to their distinct lineages, but also show marked EHH for one of the older haplotypes that does not carry any of the five LP alleles. The region of EHH of this (B) haplotype exactly coincides with a region of suppressed recombination that is detectable in families as well as in population data, and the results show how such suppression may have exaggerated haplotype-based measures of past selection

    Anthropogenic contributions to global carbonyl sulfide, carbon disulfide and organosulfides fluxes

    Get PDF
    Previous studies of the global sulfur cycle have focused almost exclusively on oxidized species and just a few sulfides. This focus is expanded here to include a wider range of reduced sulfur compounds. Inorganic sulfides tend to be bound into sediments, and sulfates are present both in sediments and the oceans. Sulfur can adopt polymeric forms that include S-S bonds. This review examines the global anthropogenic sources of reduced sulfur, updating emission inventories and widening the consideration of industrial sources. It estimates the anthropogenic fluxes of key sulfides to the atmosphere (units Gg S a-1) as: carbonyl sulfide (total 591: mainly from pulp and pigment 171, atmospheric oxidation of carbon disulfide 162, biofuel and coal combustion, 133, natural 898 Gg S a-1), carbon disulfide (total 746: rayon 395, pigment 205, pulp 78, natural 330 Gg S a-1), methanethiol (total 2119: pulp 1680, manure 330, rayon and wastewater 102, natural 6473 Gg S a-1), dimethyl sulfide (total 2197: pulp 1462, manure 660 and rayon 36, natural 31 657 Gg S a-1), dimethyl disulfide (total 1103: manure 660, pulp 273; natural 1081 Gg S a-1). The study compares the magnitude of the natural sources: marine, vegetation and soils, volcanoes and rain water with the key anthropogenic sources: paper industry, rayon-cellulose manufacture, agriculture and pigment production. Industrial sources could be reduced by better pollution control, so their impact may lessen over time. Anthropogenic emissions dominate the global budget of carbon disulfide, and some aromatic compounds such as thiophene, with emissions of methanethiol and dimethyl disufide also relatively important. Furthermore, industries related to coal and bitumen are key sources of multi-ringed thiophenes, while food production and various wastes may account for the release of significant amounts of dimethyl disulfide and dimethyl trisulfide
    • …
    corecore