3,055 research outputs found

    The State of the Circumstellar Medium Surrounding Gamma-Ray Burst Sources and its Effect on the Afterglow Appearance

    Full text link
    We present a numerical investigation of the contribution of the presupernova ejecta of Wolf-Rayet stars to the environment surrounding gamma-ray bursts (GRBs), and describe how this external matter can affect the observable afterglow characteristics. An implicit hydrodynamic calculation for massive stellar evolution is used here to provide the inner boundary conditions for an explicit hydrodynamical code to model the circumstellar gas dynamics. The resulting properties of the circumstellar medium are then used to calculate the deceleration of a relativistic, gas-dynamic jet and the corresponding afterglow light curve produced as the shock wave propagates through the shocked-wind medium. We find that variations in the stellar wind drive instabilities that may produce radial filaments in the shocked-wind region. These comet-like tails of clumps could give rise to strong temporal variations in the early afterglow lightcurve. Afterglows may be expected to differ widely among themselves, depending on the angular anisotropy of the jet and the properties of the stellar progenitor; a wide diversity of behaviors may be the rule, rather than the exception.Comment: 17 pages, 7 figures, ApJ in pres

    A Morphological Diagnostic for Dynamical Evolution of Wolf-Rayet Bubbles

    Get PDF
    We have observed H-alpha and [OIII] emission from eight of the most well defined Wolf-Rayet ring nebulae in the Galaxy. We find that in many cases the outermost edge of the [OIII] emission leads the H-alpha emission. We suggest that these offsets, when present, are due to the shock from the Wolf-Rayet bubble expanding into the circumstellar envelope. Thus, the details of the WR bubble morphology at H-alpha and [OIII] can then be used to better understand the physical condition and evolutionary stage of the nebulae around Wolf-Rayet stars, as well as place constraints on the nature of the stellar progenitor and its mass loss history.Comment: 11 pages, LaTex, 8 figures, accepted for publication in AJ, November 200

    What Produced the Ultraluminous Supernova Remnant in NGC 6946?

    Get PDF
    The ultraluminous supernova remnant (SNR) in NGC 6946 is the brightest known SNR in X-rays, ~1000 times brighter than Cas A. To probe the nature of this remnant and its progenitor, we have obtained high-dispersion optical echelle spectra. The echelle spectra detect H-alpha, [N II], and [O III] lines, and resolve these lines into a narrow (FWHM ~20--40 km/s) component from un-shocked material and a broad (FWHM ~250 km/s) component from shocked material. Both narrow and broad components have unusually high [N II]/H-alpha ratios, ~1. Using the echelle observation, archival HST images, and archival ROSAT X-ray observations, we conclude that the SNR was produced by a normal supernova, whose progenitor was a massive star, either a WN star or a luminous blue variable. The high luminosity of the remnant is caused by the supernova ejecta expanding into a dense, nitrogen-rich circumstellar nebula created by the progenitor.Comment: 20 pages, 5 figures. To be published in The Astronomical Journal, March 200

    Obese patients with a binge eating disorder have an unfavorable metabolic and inflammatory profile

    Get PDF
    To evaluate whether obese patients with a binge eating disorder (BED) have an altered metabolic and inflammatory profile related to their eating behaviors compared with non-BED obese.A total of 115 White obese patients consecutively recruited underwent biochemical, anthropometrical evaluation, and a 75-g oral glucose tolerance test. Patients answered the Binge Eating Scale and were interviewed by a psychiatrist. The patients were subsequently divided into 2 groups according to diagnosis: non-BED obese (n = 85) and BED obese (n = 30). Structural equation modeling analysis was performed to elucidate the relation between eating behaviors and metabolic and inflammatory profile.BED obese exhibited significantly higher percentages of altered eating behaviors, body mass index (P < 0.001), waist circumference (P < 0.01), fat mass (P < 0.001), and a lower lean mass (P < 0.001) when compared with non-BED obese. Binge eating disorder obese also had a worse metabolic and inflammatory profile, exhibiting significantly lower high-density lipoprotein cholesterol levels (P < 0.05), and higher levels of glycated hemoglobin (P < 0.01), uric acid (P < 0.05), erythrocyte sedimentation rate (P < 0.001), high-sensitive C-reactive protein (P < 0.01), and white blood cell counts (P < 0.01). Higher fasting insulin (P < 0.01) and higher insulin resistance (P < 0.01), assessed by homeostasis model assessment index and visceral adiposity index (P < 0.001), were observed among BED obese. All differences remained significant after adjusting for body mass index. No significant differences in fasting plasma glucose or 2-hour postchallenge plasma glucose were found. Structural equation modeling analysis confirmed the relation between the altered eating behaviors of BED and the metabolic and inflammatory profile.Binge eating disorder obese exhibited an unfavorable metabolic and inflammatory profile, which is related to their characteristic eating habits

    A Failed Gamma-Ray Burst with Dirty Energetic Jets Spirited Away? New Implications for the GRB-SN Connection from Supernova 2002ap

    Full text link
    (Abridged) SN 2002ap is an interesting event with broad spectral features like the famous SN 1998bw / GRB 980425. Here we examine the recently proposed jet hypothesis from SN 2002ap by a spectropolarimetric observation. We show that jets should be moving at about 0.23c with a jet kinetic energy of ~5 x 10^{50} erg, a similar energy scale to the GRB jets. The weak radio emission from SN 2002ap has been used to argue against the jet hypothesis, but we show that this problem can be avoided. However, the jet cannot be kept ionized because of adiabatic cooling without external photoionization or heating source. We found that only the radioactivity of 56Ni is a possible source, indicating that the jet is formed and ejected from central region of the core collapse. Then we point out that the jet will eventually sweep up enough interstellar medium and generate shocks in a few to 10 years, producing strong radio emission that can be spatially resolved, giving us a clear test for the jet hypothesis. Discussions are given on possible implications for the GRB-SN connection in the case that the jet is real. We suggest existence of two distinct classes of GRBs from similar core-collapse events but by completely different mechanisms. Cosmologically distant GRBs (~10^{50} erg) are collimated jets generated by central activity of core collapses. SN 2002ap could be a failed GRB of this type with a large baryon load. On the other hand, much less energetic ones like GRB 980425 are rather isotropic, which may be produced by hydrodynamical shock acceleration at the outer envelope. We propose that the radioactive ionization for the SN 2002ap jet may give a new explanation also for the X-ray line features often observed in GRB afterglows.Comment: 14 pages, 5 figures. Version accepted to Ap

    An X-ray Survey of Wolf-Rayet Stars in the Magellanic Clouds. II. The ROSAT PSPC and HRI Datasets

    Full text link
    Wolf-Rayet (WR) stars in the Magellanic Clouds (MCs) are ideal for studying the production of X-ray emission by their strong fast stellar winds. We have started a systematic survey for X-ray emission from WR stars in the MCs using archival Chandra, ROSAT, and XMM-Newton observations. In Paper I, we reported the detection of X-ray emission from 29 WR stars using Chandra ACIS observations of 70 WR stars in the MCs. In this paper, we report the search and analysis of archival ROSAT PSPC and HRI observations of WR stars. While useful ROSAT observations are available for 117 WR stars in the MCs, X-ray emission is detected from only 7 of them. The detection rate of X-ray emission from MCs WR stars in the ROSAT survey is much smaller than in the Chandra ACIS survey, illustrating the necessity of high angular resolution and sensitivity. LMC-WR 101-102 and 116 were detected by both ROSAT and Chandra, but no large long-term variations are evident.Comment: To appear in The Astrophysical Journal Supplement. A version with full resolution figures can be obtained upon request to [email protected]

    The Case for a Misaligned Relativistic Jet from SN 2001em

    Full text link
    SN 2001em, identified as a Type Ic supernova, has recently been detected in the radio and X-rays, ≳\gtrsim 2 yr after the explosion. The high luminosities at such late times might arise from a relativistic jet viewed substantially off-axis that becomes visible only when it turns mildly relativistic and its emission is no longer strongly beamed away from us. Alternatively, the emission might originate from the interaction of the SN shell with the circumstellar medium. We find that the latter scenario is hard to reconcile with the observed rapid rise in the radio flux and optically thin spectrum, FΜ∝Μ−0.36±0.16t1.9±0.4F_\nu\propto\nu^{-0.36\pm 0.16}t^{1.9\pm 0.4}, while these features arise naturally from a misaligned relativistic jet. The high X-ray luminosity provides an independent and more robust constraint -- it requires ∌1051\sim 10^{51} erg in mildly relativistic ejecta. The source should therefore currently have a large angular size (∌\sim 2 mas) which could be resolved in the radio with VLBA. It is also expected to be bipolar and is thus likely to exhibit a large degree of linear polarization (∌10\sim 10%-20%). The presence of a relativistic outflow in SN 2001em would have interesting implications. It would suggest that several percent of SNe Ib/c produce mildly relativistic jets, with an initial Lorentz factor Γ0≳2\Gamma_0\gtrsim 2, while the fraction that produce GRB jets (with Γ0≳100\Gamma_0\gtrsim 100) is ∌100\sim 100 times smaller. This could considerably increase the expected number of transients similar to orphan GRB afterglows in the radio, and to a lesser extent in the optical and X-rays, if there is a continuous distribution in Γ0\Gamma_0. Furthermore, this may give further credence to the idea that core collapse SNe, and in particular SNe Type Ib/c, are triggered by bipolar jets.Comment: recent X-ray detection of SN 2001em by Chandra strengthens our conclusion

    FUSE Observations of Nebular O VI Emission from NGC 6543

    Full text link
    NGC 6543 is one of the few planetary nebulae (PNe) whose X-ray emission has been shown to be extended and originate from hot interior gas. Using FUSE observations we have now detected nebular O VI emission from NGC 6543. Its central star, with an effective temperature of ~50,000 K, is too cool to photoionize O V, so the O VI ions must have been produced by thermal collisions at the interface between the hot interior gas and the cool nebular shell. We modeled the O VI emission incorporating thermal conduction, but find that simplistic assumptions for the AGB and fast wind mass loss rates overproduce X-ray emission and O VI emission. We have therefore adopted the pressure of the interior hot gas for the interface layer and find that expected O VI emission to be comparable to the observations.Comment: 4 pages, 4 figures, 1 table, using emulateapj.cls style. Accepted for publication in ApJ Letter
    • 

    corecore