11 research outputs found

    Effects of particle size distribution and composition on rheological properties of dark chocolate

    No full text
    Control of chocolate viscosity is vital to its quality and production cost, and directly influenced by solids particle size distribution (PSD) and composition. Effects of PSD and composition on rheological properties of molten dark chocolate were investigated by varying PSD [D90 (90% finer than this size) of 18, 25, 35 and 50 μm], fat 25, 30 and 35% and lecithin (0.3 and 0.5%) using a shear rate-controlled rheometer. PSD, fat and lecithin content significantly affected all rheological parameters, with significant interaction among factors. Increasing particles size gave significant reductions in Casson plastic viscosity, Casson yield value, yield stress, apparent viscosity and thixotropy, with greatest effect with 25% fat and 0.3% lecithin, which reduced with increasing fat and lecithin contents. Statistical analysis revealed that fat exerts the greatest effect on the variability in all the rheological properties followed by PSD and lecithin. PSD, fat and lecithin could be manipulated to control dark chocolate rheology, influencing quality whilst reducing production cost

    Relationship between rheological, textural and melting properties of dark chocolate as influenced by particle size distribution and composition

    No full text
    In dark chocolate, rheological properties during processing are influenced by particle size distribution (PSD), fat and lecithin contents with consequential effects on finished texture and melting characteristics. Multivariate regression, correlation and principal component analyses (PCA) were used to explore their interrelationships. A 4 × 3 × 2 factorial experiment was conducted with varying PSD [D 90 (90% finer than this size) of 18, 25, 35 and 50 μm], fat (25, 30 and 35%) and lecithin (0.3 and 0.5%). Rheological properties (yield stress and apparent viscosity), textural properties (firmness, index of viscosity and hardness) and melting index (duration) were respectively measured using shear rate-controlled rheometer, TA.HD Plus texture analyzer and differential scanning calorimetry. The PSD, fat and lecithin contents significantly influenced all rheological, textural properties and some melting characteristics. Increasing particles sizes reduced yield stress, apparent viscosity, firmness, index of viscosity, hardness and melting index of products with greatest influence with 25% fat and 0.3% lecithin, reduced with increasing fat and lecithin contents. There were high correlation (r = 0.78-0.99) and regression coefficients (R 2 = 0.59-0.99) among the rheological, textural and melting index indicating their high inter-relationships. In PCA, the rheological, textural and melting index accounted for >95% variance in the data

    Analytical methods

    No full text

    Processing methods

    No full text

    Interactions between fats, bloom and rancidity

    No full text

    Applications

    No full text

    Legislation and regulation

    No full text

    Physical chemistry

    No full text

    Production and characteristic properties

    No full text
    corecore