10 research outputs found

    MUC13 negatively regulates tight junction proteins and intestinal epithelial barrier integrity via Protein Kinase C

    Get PDF
    Regulation and adaptation of intestinal epithelial barrier function is essential for human health. The transmembrane mucin MUC13 is an abundant intestinal glycoprotein with important functions for mucosal maintenance that are not yet completely understood. We demonstrate that in intestinal epithelial monolayers MUC13 localized to both the apical surface and the tight junction (TJ) region on the lateral membrane. MUC13 deletion resulted in increased transepithelial resistance (TEER) and reduced translocation of small solutes. TJ proteins including claudins and occludin were highly increased in membrane fractions of MUC13 knockout cells. Removal of the MUC13 cytoplasmic tail (CT) also altered TJ composition but did not result in increased TEER. The increased buildup of TJ complexes in ΔMUC13 and MUC13-ΔCT cells was dependent on PKC, which is in line with a predicted PKC motif in the MUC13 cytoplasmic tail. The responsible PKC member might be PKCδ based on elevated protein levels in the absence of MUC13. Our results identify MUC13 as a central player in TJ complex stability and intestinal barrier permeability

    MUC13 negatively regulates tight junction proteins and intestinal epithelial barrier integrity via Protein Kinase C

    Get PDF
    Glycosylated mucin proteins contribute to the essential barrier function of the intestinal epithelium. The transmembrane mucin MUC13 is an abundant intestinal glycoprotein with important functions for mucosal maintenance that are not yet completely understood. We demonstrate that in human intestinal epithelial monolayers, MUC13 localized to both the apical surface and the tight junction (TJ) region on the lateral membrane. MUC13 deletion resulted in increased transepithelial resistance (TEER) and reduced translocation of small solutes. TEER buildup in ΔMUC13 cells could be prevented by addition of MLCK, ROCK or protein kinase C (PKC) inhibitors. The levels of TJ proteins including claudins and occludin were highly increased in membrane fractions of MUC13 knockout cells. Removal of the MUC13 cytoplasmic tail (CT) also altered TJ composition but did not affect TEER. The increased buildup of TJ complexes in ΔMUC13 and MUC13-ΔCT cells was dependent on PKC. The responsible PKC member might be PKCδ (or PRKCD) based on elevated protein levels in the absence of full-length MUC13. Our results demonstrate for the first time that a mucin protein can negatively regulate TJ function and stimulate intestinal barrier permeability

    Vaginal bacterium Prevotella timonensis turns protective Langerhans cells into HIV-1 reservoirs for virus dissemination

    Get PDF
    Dysbiosis of vaginal microbiota is associated with increased HIV-1 acquisition, but the underlying cellular mechanisms remain unclear. Vaginal Langerhans cells (LCs) protect against mucosal HIV-1 infection via autophagy-mediated degradation of HIV-1. As LCs are in continuous contact with bacterial members of the vaginal microbiome, we investigated the impact of commensal and dysbiosis-associated vaginal (an)aerobic bacterial species on the antiviral function of LCs. Most of the tested bacteria did not affect the HIV-1 restrictive function of LCs. However, Prevotella timonensis induced a vast uptake of HIV-1 by vaginal LCs. Internalized virus remained infectious for days and uptake was unaffected by antiretroviral drugs. P. timonensis-exposed LCs efficiently transmitted HIV-1 to target cells both in vitro and ex vivo. Additionally, P. timonensis exposure enhanced uptake and transmission of the HIV-1 variants that establish infection after sexual transmission, the so-called Transmitted Founder variants. Our findings, therefore, suggest that P. timonensis might set the stage for enhanced HIV-1 susceptibility during vaginal dysbiosis and advocate targeted treatment of P. timonensis during bacterial vaginosis to limit HIV-1 infection

    First person - Celia Segui-Perez

    No full text

    Prevotella timonensis degrades the vaginal epithelial glycocalyx through high fucosidase and sialidase activities

    No full text
    Bacterial vaginosis (BV) is a polymicrobial infection of the female reproductive tract (FRT). BV is characterized by replacement of health-associated Lactobacillus species by diverse anaerobic bacteria, including the well-known Gardnerella vaginalis. Prevotella timonensis and Prevotella bivia are anaerobes that are found in a significant percentage of BV patients, but their pathogenic properties are yet to be determined. Defining characteristics of anaerobic overgrowth in BV are adherence to the mucosal surface and the increased activity of mucin-degrading enzymes such as sialidases in vaginal secretions. Here, we demonstrate that P. timonensis but not P. bivia strongly adhered to vaginal and endocervical cells to a similar level as G. vaginalis but did not elicit a comparable pro-inflammatory response. The P. timonensis genome uniquely encodes a large set of mucus-degrading enzymes including 4 putative fucosidases and 2 putative sialidases, PtNanH1 and PtNanH2. Enzyme assays demonstrated that fucosidase and sialidase activity in P. timonensis cell-bound and secreted fractions was significantly higher than for other vaginal anaerobes. Infection assays revealed that P. timonensis fucosidases and sialidases efficiently removed fucose and α2,3- and α2,6-linked sialic acid moieties from the epithelial glycocalyx. Recombinantly expressed P. timonensis NanH1 and NanH2 efficiently removed α2,3 and α2,6-linked sialic acids from the epithelial surface and sialic acid removal by P. timonensis could be blocked using inhibitors. This study demonstrates that P. timonensis has distinct virulence properties that include initial adhesion and a high capacity for mucin degradation at the vaginal epithelial mucosal surface. Our results underline the importance of understanding the role of different anaerobic bacteria in BV

    MUC13 negatively regulates tight junction proteins and intestinal epithelial barrier integrity via Protein Kinase C

    No full text
    Regulation and adaptation of intestinal epithelial barrier function is essential for human health. The transmembrane mucin MUC13 is an abundant intestinal glycoprotein with important functions for mucosal maintenance that are not yet completely understood. We demonstrate that in intestinal epithelial monolayers MUC13 localized to both the apical surface and the tight junction (TJ) region on the lateral membrane. MUC13 deletion resulted in increased transepithelial resistance (TEER) and reduced translocation of small solutes. TJ proteins including claudins and occludin were highly increased in membrane fractions of MUC13 knockout cells. Removal of the MUC13 cytoplasmic tail (CT) also altered TJ composition but did not result in increased TEER. The increased buildup of TJ complexes in ΔMUC13 and MUC13-ΔCT cells was dependent on PKC, which is in line with a predicted PKC motif in the MUC13 cytoplasmic tail. The responsible PKC member might be PKCδ based on elevated protein levels in the absence of MUC13. Our results identify MUC13 as a central player in TJ complex stability and intestinal barrier permeability

    Vaccine-induced Th1-type response protects against invasive group A Streptococcus infection in the absence of opsonizing antibodies

    Get PDF
    Recent global advocacy efforts have highlighted the importance of development of a vaccine against group A Streptococcus (GAS). Combo5 is a non-M protein-based vaccine that provides protection against GAS skin infection in mice and reduces the severity of pharyngitis in nonhuman primates. However, Combo5 with the addition of aluminum hydroxide (alum) as an adjuvant failed to protect against invasive GAS infection of mice. Here, we show that formulation of Combo5 with adjuvants containing saponin QS21 significantly improves protective efficacy, even though all 7 adjuvants tested generated high antigen-specific IgG antibody titers, including alum. Detailed characterization of Combo5 formulated with SMQ adjuvant, a squalene-in-water emulsion containing a TLR4 agonist and QS21, showed significant differences from the results obtained with alum in IgG subclasses generated following immunization, with an absence of GAS opsonizing antibodies. SMQ, but not alum, generated strong interleukin-6 (IL-6), gamma interferon (IFN-γ), and tumor necrosis alpha (TNF-α) responses. This work highlights the importance of adjuvant selection for non-M protein-based GAS vaccines to optimize immune responses and protective efficacy.IMPORTANCE Availability of a group A Streptococcus vaccine remains an unmet public health need. Here, we tested different adjuvant formulations to improve the protective efficacy of non-M protein vaccine Combo5 in an invasive disease model. We show that novel adjuvants can dramatically shape the type of immune response developed following immunization with Combo5 and significantly improve protection. In addition, protection afforded by Combo5 is not mediated by opsonizing antibodies, believed to be the main correlate of protection against GAS infections. Overall, this report highlights the importance of adjuvant selection in raising protective immune responses against GAS invasive infection. Adjuvants that can provide a more balanced Th1/Th2-type response may be required to optimize protection of GAS vaccines, particularly those based on non-M protein antigens

    Vaginal bacterium Prevotella timonensis turns protective Langerhans cells into HIV-1 reservoirs for virus dissemination

    No full text
    Dysbiosis of vaginal microbiota is associated with increased HIV-1 acquisition, but the underlying cellular mechanisms remain unclear. Vaginal Langerhans cells (LCs) protect against mucosal HIV-1 infection via autophagy-mediated degradation of HIV-1. As LCs are in continuous contact with bacterial members of the vaginal microbiome, we investigated the impact of commensal and dysbiosis-associated vaginal (an)aerobic bacterial species on the antiviral function of LCs. Most of the tested bacteria did not affect the HIV-1 restrictive function of LCs. However, Prevotella timonensis induced a vast uptake of HIV-1 by vaginal LCs. Internalized virus remained infectious for days and uptake was unaffected by antiretroviral drugs. P. timonensis-exposed LCs efficiently transmitted HIV-1 to target cells both in vitro and ex vivo. Additionally, P. timonensis exposure enhanced uptake and transmission of the HIV-1 variants that establish infection after sexual transmission, the so-called Transmitted Founder variants. Our findings, therefore, suggest that P. timonensis might set the stage for enhanced HIV-1 susceptibility during vaginal dysbiosis and advocate targeted treatment of P. timonensis during bacterial vaginosis to limit HIV-1 infection

    Vaginal bacterium Prevotella timonensis turns protective Langerhans cells into HIV-1 reservoirs for virus dissemination

    No full text
    Dysbiosis of vaginal microbiota is associated with increased HIV-1 acquisition, but the underlying cellular mechanisms remain unclear. Vaginal Langerhans cells (LCs) protect against mucosal HIV-1 infection via autophagy-mediated degradation of HIV-1. As LCs are in continuous contact with bacterial members of the vaginal microbiome, we investigated the impact of commensal and dysbiosis-associated vaginal (an)aerobic bacterial species on the antiviral function of LCs. Most of the tested bacteria did not affect the HIV-1 restrictive function of LCs. However, Prevotella timonensis induced a vast uptake of HIV-1 by vaginal LCs. Internalized virus remained infectious for days and uptake was unaffected by antiretroviral drugs. P. timonensis-exposed LCs efficiently transmitted HIV-1 to target cells both in vitro and ex vivo. Additionally, P. timonensis exposure enhanced uptake and transmission of the HIV-1 variants that establish infection after sexual transmission, the so-called Transmitted Founder variants. Our findings, therefore, suggest that P. timonensis might set the stage for enhanced HIV-1 susceptibility during vaginal dysbiosis and advocate targeted treatment of P. timonensis during bacterial vaginosis to limit HIV-1 infection

    Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition)

    No full text
    corecore