36 research outputs found
First-Order Query Evaluation with Cardinality Conditions
We study an extension of first-order logic that allows to express cardinality
conditions in a similar way as SQL's COUNT operator. The corresponding logic
FOC(P) was introduced by Kuske and Schweikardt (LICS'17), who showed that query
evaluation for this logic is fixed-parameter tractable on classes of structures
(or databases) of bounded degree. In the present paper, we first show that the
fixed-parameter tractability of FOC(P) cannot even be generalised to very
simple classes of structures of unbounded degree such as unranked trees or
strings with a linear order relation.
Then we identify a fragment FOC1(P) of FOC(P) which is still sufficiently
strong to express standard applications of SQL's COUNT operator. Our main
result shows that query evaluation for FOC1(P) is fixed-parameter tractable
with almost linear running time on nowhere dense classes of structures. As a
corollary, we also obtain a fixed-parameter tractable algorithm for counting
the number of tuples satisfying a query over nowhere dense classes of
structures
Answering Conjunctive Queries under Updates
We consider the task of enumerating and counting answers to -ary
conjunctive queries against relational databases that may be updated by
inserting or deleting tuples. We exhibit a new notion of q-hierarchical
conjunctive queries and show that these can be maintained efficiently in the
following sense. During a linear time preprocessing phase, we can build a data
structure that enables constant delay enumeration of the query results; and
when the database is updated, we can update the data structure and restart the
enumeration phase within constant time. For the special case of self-join free
conjunctive queries we obtain a dichotomy: if a query is not q-hierarchical,
then query enumeration with sublinear delay and sublinear update time
(and arbitrary preprocessing time) is impossible.
For answering Boolean conjunctive queries and for the more general problem of
counting the number of solutions of k-ary queries we obtain complete
dichotomies: if the query's homomorphic core is q-hierarchical, then size of
the the query result can be computed in linear time and maintained with
constant update time. Otherwise, the size of the query result cannot be
maintained with sublinear update time. All our lower bounds rely on the
OMv-conjecture, a conjecture on the hardness of online matrix-vector
multiplication that has recently emerged in the field of fine-grained
complexity to characterise the hardness of dynamic problems. The lower bound
for the counting problem additionally relies on the orthogonal vectors
conjecture, which in turn is implied by the strong exponential time hypothesis.
By sublinear we mean for some
, where is the size of the active domain of the current
database
Synchronization of organ pipes: experimental observations and modeling
We report measurements on the synchronization properties of organ pipes.
First, we investigate influence of an external acoustical signal from a
loudspeaker on the sound of an organ pipe. Second, the mutual influence of two
pipes with different pitch is analyzed. In analogy to the externally driven, or
mutually coupled self-sustained oscillators, one observes a frequency locking,
which can be explained by synchronization theory. Further, we measure the
dependence of the frequency of the signals emitted by two mutually detuned
pipes with varying distance between the pipes. The spectrum shows a broad
``hump'' structure, not found for coupled oscillators. This indicates a complex
coupling of the two organ pipes leading to nonlinear beat phenomena.Comment: 24 pages, 10 Figures, fully revised, 4 big figures separate in jpeg
format. accepted for Journal of the Acoustical Society of Americ
Answering Non-Monotonic Queries in Relational Data Exchange
Relational data exchange is the problem of translating relational data from a
source schema into a target schema, according to a specification of the
relationship between the source data and the target data. One of the basic
issues is how to answer queries that are posed against target data. While
consensus has been reached on the definitive semantics for monotonic queries,
this issue turned out to be considerably more difficult for non-monotonic
queries. Several semantics for non-monotonic queries have been proposed in the
past few years. This article proposes a new semantics for non-monotonic
queries, called the GCWA*-semantics. It is inspired by semantics from the area
of deductive databases. We show that the GCWA*-semantics coincides with the
standard open world semantics on monotonic queries, and we further explore the
(data) complexity of evaluating non-monotonic queries under the
GCWA*-semantics. In particular, we introduce a class of schema mappings for
which universal queries can be evaluated under the GCWA*-semantics in
polynomial time (data complexity) on the core of the universal solutions.Comment: 55 pages, 3 figure
Molecular Phylogeny and Biogeography of the Native Rodents of Madagascar (Muridae: Nesomyinae): A Test of the Single-Origin Hypothesis
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/72349/1/j.1096-0031.1999.tb00267.x.pd
Cichlid biogeography: comment and review
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/72313/1/j.1467-2979.2004.00148.x.pd
Unsteady hydraulic simulation of the cavitating part load vortex rope in Francis turbines
For Francis turbines at part load operation a helical vortex rope is formed due to the swirling nature of the flow exiting the runner. This vortex creates pressure fluctuations which can lead to power swings, and the unsteady loading can lead to fatigue damage of the runner. In the case that the vortex rope cavitates there is the additional risk that hydro-acoustic resonance can occur. It is therefore important to be able to accurately simulate this phenomenon to address these issues. In this paper an unsteady, multi-phase CFD model was used to simulate two part-load operating points, for two different cavitation conditions. The simulation results were validated with test-rig data, and showed very good agreement. These results also served as an input for FEA calculations and fatigue analysis, which are presented in a separate study
Campagne Rapanui (et transit Manrap): Les frontieres et les deformations de la microplaque Rapanui
The Rapanui Expedition consisted of three legs. The first leg (named Manrap) was a transit between Manzanillo, Mexico and Easter Island, Chile, the second leg (Rapanui 1) consisted of work on the Rapanui (Easter) microplate and was the primary workload of the expedition, and the third leg (Rapanui 2) was a transit from Easter Island, Chile to Tahiti, French Polynesia, and realized additional work on the Rapanui Microplate, and a fuel stop at Hao, French Polynesia. Instrumentation on all legs consisted of standard geophysical tools used on the N/O Jean Charcot