13 research outputs found

    Engineering Entanglement: The Fast-Approach Phase Gate

    Full text link
    Optimal-control techniques and a fast-approach scheme are used to implement a collisional control phase gate in a model of cold atoms in an optical lattice, significantly reducing the gate time as compared to adiabatic evolution while maintaining high fidelity. New objective functionals are given for which optimal paths are obtained for evolution that yields a control-phase gate up to single-atom Rabi shifts. Furthermore, the fast-approach procedure is used to design a path to significantly increase the fidelity of non-adiabatic transport in a recent experiment. Also, the entanglement power of phase gates is quantified.Comment: 7 pages, 4 figures. Phys. Rev. A (in press

    Electron Magnetic Resonance: The Modified Bloch Equation

    Full text link
    We find a modified Bloch equation for the electronic magnetic moment when the magnetic moment explicitly contains a diamagnetic contribution (a magnetic field induced magnetic moment arising from the electronic orbital angular momentum) in addition to the intrinsic magnetic moment of the electron. The modified Bloch is coupled to equations of motion for the position and momentum operators. In the presence of static and time varying magnetic field components, the magnetic moment oscillates out of phase with the magnetic field and power is absorbed by virtue of the magnetic field induced magnetic moment, even in the absence of coupling to the environment. We explicitly work out the spectrum and absorption for the case of a pp state electron

    Quantum Tunneling in the Wigner Representation

    Get PDF
    Time dependence for barrier penetration is considered in the phase space. An asymptotic phase-space propagator for nonrelativistic scattering on a one - dimensional barrier is constructed. The propagator has a form universal for various initial state preparations and local potential barriers. It is manifestly causal and includes time-lag effects and quantum spreading. Specific features of quantum dynamics which disappear in the standard semi-classical approximation are revealed. The propagator may be applied to calculation of the final momentum and coordinate distributions, for particles transmitted through or reflected from the potential barrier, as well as for elucidating the tunneling time problem.Comment: 18 pages, LATEX, no figure

    Irreversible Transitions in the Wigner Representation

    No full text

    Hopping and Jumping between Potential Energy Surfaces †

    No full text
    corecore