1,804 research outputs found
Bulk superconducting phase with a full energy gap in the doped topological insulator Cu_xBi_2Se_3
The superconductivity recently found in the doped topological insulator
Cu_xBi_2Se_3 offers a great opportunity to search for a topological
superconductor. We have successfully prepared a single-crystal sample with a
large shielding fraction and measured the specific-heat anomaly associated with
the superconductivity. The temperature dependence of the specific heat suggests
a fully-gapped, strong-coupling superconducting state, but the BCS theory is
not in full agreement with the data, which hints at a possible unconventional
pairing in Cu_xBi_2Se_3. Also, the evaluated effective mass of 2.6m_e (m_e is
the free electron mass) points to a large mass enhancement in this material.Comment: 4 pages, 3 figure
Chemical potential jump between hole- and electron-doped sides of ambipolar high-Tc cuprate
In order to study an intrinsic chemical potential jump between the hole- and
electron-doped high-Tc superconductors, we have performed core-level X-ray
photoemission spectroscopy (XPS) measurements of Y0.38La0.62Ba1.74La0.26Cu3Oy
(YLBLCO), into which one can dope both holes and electrons with maintaining the
same crystal structure. Unlike the case between the hole-doped system
La_2-xSrxCuO4 and the electron-doped system Nd_2-xCexCuO4, we have estimated
the true chemical potential jump between the hole- and electron-doped YLBLCO to
be ~0.8 eV, which is much smaller than the optical gaps of 1.4-1.7 eV reported
for the parent insulating compounds. We attribute the reduced jump to the
indirect nature of the charge-excitation gap as well as to the polaronic nature
of the doped carriers.Comment: 4 pages, 3 figure
Oscillatory angular dependence of the magnetoresistance in a topological insulator Bi_{1-x}Sb_{x}
The angular-dependent magnetoresistance and the Shubnikov-de Haas
oscillations are studied in a topological insulator Bi_{0.91}Sb_{0.09}, where
the two-dimensional (2D) surface states coexist with a three-dimensional (3D)
bulk Fermi surface (FS). Two distinct types of oscillatory phenomena are
discovered in the angular-dependence: The one observed at lower fields is shown
to originate from the surface state, which resides on the (2\bar{1}\bar{1})
plane, giving a new way to distinguish the 2D surface state from the 3D FS. The
other one, which becomes prominent at higher fields, probably comes from the
(111) plane and is obviously of unknown origin, pointing to new physics in
transport properties of topological insulators.Comment: 4 pages, 5 figures, revised version with improved data and analysi
- …