1,802 research outputs found

    Bulk superconducting phase with a full energy gap in the doped topological insulator Cu_xBi_2Se_3

    Full text link
    The superconductivity recently found in the doped topological insulator Cu_xBi_2Se_3 offers a great opportunity to search for a topological superconductor. We have successfully prepared a single-crystal sample with a large shielding fraction and measured the specific-heat anomaly associated with the superconductivity. The temperature dependence of the specific heat suggests a fully-gapped, strong-coupling superconducting state, but the BCS theory is not in full agreement with the data, which hints at a possible unconventional pairing in Cu_xBi_2Se_3. Also, the evaluated effective mass of 2.6m_e (m_e is the free electron mass) points to a large mass enhancement in this material.Comment: 4 pages, 3 figure

    Chemical potential jump between hole- and electron-doped sides of ambipolar high-Tc cuprate

    Full text link
    In order to study an intrinsic chemical potential jump between the hole- and electron-doped high-Tc superconductors, we have performed core-level X-ray photoemission spectroscopy (XPS) measurements of Y0.38La0.62Ba1.74La0.26Cu3Oy (YLBLCO), into which one can dope both holes and electrons with maintaining the same crystal structure. Unlike the case between the hole-doped system La_2-xSrxCuO4 and the electron-doped system Nd_2-xCexCuO4, we have estimated the true chemical potential jump between the hole- and electron-doped YLBLCO to be ~0.8 eV, which is much smaller than the optical gaps of 1.4-1.7 eV reported for the parent insulating compounds. We attribute the reduced jump to the indirect nature of the charge-excitation gap as well as to the polaronic nature of the doped carriers.Comment: 4 pages, 3 figure

    Oscillatory angular dependence of the magnetoresistance in a topological insulator Bi_{1-x}Sb_{x}

    Full text link
    The angular-dependent magnetoresistance and the Shubnikov-de Haas oscillations are studied in a topological insulator Bi_{0.91}Sb_{0.09}, where the two-dimensional (2D) surface states coexist with a three-dimensional (3D) bulk Fermi surface (FS). Two distinct types of oscillatory phenomena are discovered in the angular-dependence: The one observed at lower fields is shown to originate from the surface state, which resides on the (2\bar{1}\bar{1}) plane, giving a new way to distinguish the 2D surface state from the 3D FS. The other one, which becomes prominent at higher fields, probably comes from the (111) plane and is obviously of unknown origin, pointing to new physics in transport properties of topological insulators.Comment: 4 pages, 5 figures, revised version with improved data and analysi
    • …
    corecore