24 research outputs found
A Genetically Encoded AND Gate for Cell-Targeted Metabolic Labeling of Proteins
We describe a genetic AND gate for cell-targeted metabolic labeling and proteomic analysis in complex cellular systems. The centerpiece of the AND gate is a bisected methionyl-tRNA synthetase (MetRS) that charges the Met surrogate azidonorleucine (Anl) to tRNAMet. Cellular protein labeling occurs only upon activation of two different promoters that drive expression of the N- and C-terminal fragments of the bisected MetRS. Anl-labeled proteins can be tagged with fluorescent dyes or affinity reagents via either copper-catalyzed or strain-promoted azideâalkyne cycloaddition. Protein labeling is apparent within 5 min after addition of Anl to bacterial cells in which the AND gate has been activated. This method allows spatial and temporal control of proteomic labeling and identification of proteins made in specific cellular subpopulations. The approach is demonstrated by selective labeling of proteins in bacterial cells immobilized in the center of a laminar-flow microfluidic channel, where they are exposed to overlapping, opposed gradients of inducers of the N- and C-terminal MetRS fragments. The observed labeling profile is predicted accurately from the strengths of the individual input signals
A 'resource allocator' for transcription based on a highly fragmented T7 RNA polymerase
Synthetic genetic systems share resources with the host, including machinery for transcription and translation. Phage RNA polymerases (RNAPs) decouple transcription from the host and generate high expression. However, they can exhibit toxicity and lack accessory proteins (Ï factors and activators) that enable switching between different promoters and modulation of activity. Here, we show that T7 RNAP (883 amino acids) can be divided into four fragments that have to be coâexpressed to function. The DNAâbinding loop is encoded in a Câterminal 285âaa âÏ fragmentâ, and fragments with different specificity can direct the remaining 601âaa âcore fragmentâ to different promoters. Using these parts, we have built a resource allocator that sets the core fragment concentration, which is then shared by multiple Ï fragments. Adjusting the concentration of the core fragment sets the maximum transcriptional capacity available to a synthetic system. Further, positive and negative regulation is implemented using a 67âaa Nâterminal âα fragmentâ and a null (inactivated) Ï fragment, respectively. The α fragment can be fused to recombinant proteins to make promoters responsive to their levels. These parts provide a toolbox to allocate transcriptional resources via different schemes, which we demonstrate by building a system which adjusts promoter activity to compensate for the difference in copy number of two plasmids.United States. Office of Naval Research (N00014â13â1â0074)National Institutes of Health (U.S.) (5R01GM095765)National Science Foundation (U.S.) (Synthetic Biology Engineering Research Center (SA5284â11210))United States. Dept. of Defense (National Defense Science and Engineering Graduate Fellowship (NDSEG) Program))Hertz Foundation (Fellowship
Tandem repeat coupled with endonuclease cleavage (TREC): a seamless modification tool for genome engineering in yeast
The complete synthetic Mycoplasma genitalium genome (âŒ583 kb) has been assembled and cloned as a circular plasmid in the yeast Saccharomyces cerevisiae. Attempts to engineer the cloned genome by standard genetic methods involving the URA3/5-fluoroorotic acid (5-FOA) counter-selection have shown a high background of 5-FOA resistant clones derived from spontaneous deletions of the bacterial genome maintained in yeast. Here, we report a method that can seamlessly modify the bacterial genome in yeast with high efficiency. This method requires two sequential homologous recombination events. First, the target region is replaced with a mutagenesis cassette that consists of a knock-out CORE (an18-bp I-SceI recognition site, the SCEI gene under the control of the GAL1 promoter, and the URA3 marker) and a DNA fragment homologous to the sequence upstream of the target site. The replacement generates tandem repeat sequences flanking the CORE. Second, galactose induces the expression of I-SceI, which generates a double-strand break (DSB) at the recognition site. This DSB promotes intra-molecular homologous recombination between the repeat sequences, and leads to an excision of the CORE. As a result, a seamless modification is generated. This method can be adapted for a variety of genomic modifications and may provide an important tool to modify and design natural or synthetic genomes propagated in yeast
Modular control of multiple pathways using engineered orthogonal T7 polymerases
Synthetic genetic sensors and circuits enable programmable control over the timing and conditions of gene expression. They are being increasingly incorporated into the control of complex, multigene pathways and cellular functions. Here, we propose a design strategy to genetically separate the sensing/circuitry functions from the pathway to be controlled. This separation is achieved by having the output of the circuit drive the expression of a polymerase, which then activates the pathway from polymerase-specific promoters. The sensors, circuits and polymerase are encoded together on a âcontrollerâ plasmid. Variants of T7 RNA polymerase that reduce toxicity were constructed and used as scaffolds for the construction of four orthogonal polymerases identified via part mining that bind to unique promoter sequences. This set is highly orthogonal and induces cognate promoters by 8- to 75-fold more than off-target promoters. These orthogonal polymerases enable four independent channels linking the outputs of circuits to the control of different cellular functions. As a demonstration, we constructed a controller plasmid that integrates two inducible systems, implements an AND logic operation and toggles between metabolic pathways that change Escherichia coli green (deoxychromoviridans) and red (lycopene). The advantages of this organization are that (i) the regulation of the pathway can be changed simply by introducing a different controller plasmid, (ii) transcription is orthogonal to host machinery and (iii) the pathway genes are not transcribed in the absence of a controller and are thus more easily carried without invoking evolutionary pressure.United States. Office of Naval Research (Award number N00014-10-1-0245)National Science Foundation (U.S.). (CCF-0943385)National Institutes of Health (U.S.) (AI067699)National Science Foundation (U.S.). Graduate Research FellowshipAmerican Society for Engineering Education. National Defense Science and Engineering Graduate FellowshipHertz Foundation. Graduate Fellowshi
Burden-driven feedback control of gene expression
Cells use feedback regulation to ensure robust growth despite fluctuating demands for resources and differing environmental conditions. However, the expression of foreign proteins from engineered constructs is an unnatural burden that cells are not adapted for. Here we combined RNA-seq with an in vivo assay to identify the major transcriptional changes that occur in Escherichia coli when inducible synthetic constructs are expressed. We observed that native promoters related to the heat-shock response activated expression rapidly in response to synthetic expression, regardless of the construct. Using these promoters, we built a dCas9-based feedback-regulation system that automatically adjusts the expression of a synthetic construct in response to burden. Cells equipped with this general-use controller maintained their capacity for native gene expression to ensure robust growth and thus outperformed unregulated cells in terms of protein yield in batch production. This engineered feedback is to our knowledge the first example of a universal, burden-based biomolecular control system and is modular, tunable and portable
Prediction of Cellular Burden with Host--Circuit Models
Heterologous gene expression draws resources from host cells. These resources
include vital components to sustain growth and replication, and the resulting
cellular burden is a widely recognised bottleneck in the design of robust
circuits. In this tutorial we discuss the use of computational models that
integrate gene circuits and the physiology of host cells. Through various use
cases, we illustrate the power of host-circuit models to predict the impact of
design parameters on both burden and circuit functionality. Our approach relies
on a new generation of computational models for microbial growth that can
flexibly accommodate resource bottlenecks encountered in gene circuit design.
Adoption of this modelling paradigm can facilitate fast and robust design
cycles in synthetic biology
TREC-IN: gene knock-in genetic tool for genomes cloned in yeast.
With the development of several new technologies using synthetic biology, it is possible to engineer genetically intractable organisms including Mycoplasma mycoides subspecies capri (Mmc), by cloning the intact bacterial genome in yeast, using the host yeast's genetic tools to modify the cloned genome, and subsequently transplanting the modified genome into a recipient cell to obtain mutant cells encoded by the modified genome. The recently described tandem repeat coupled with endonuclease cleavage (TREC) method has been successfully used to generate seamless deletions and point mutations in the mycoplasma genome using the yeast DNA repair machinery. But, attempts to knock-in genes in some cases have encountered a high background of transformation due to maintenance of unwanted circularization of the transforming DNA, which contains possible autonomously replicating sequence (ARS) activity. To overcome this issue, we incorporated a split marker system into the TREC method, enabling seamless gene knock-in with high efficiency. The modified method is called TREC-assisted gene knock-in (TREC-IN). Since a gene to be knocked-in is delivered by a truncated non-functional marker, the background caused by an incomplete integration is essentially eliminated.In this paper, we demonstrate applications of the TREC-IN method in gene complementation and genome minimization studies in Mmc. In the first example, the Mmc dnaA gene was seamlessly replaced by an orthologous gene, which shares a high degree of identity at the nucleotide level with the original Mmc gene, with high efficiency and low background. In the minimization example, we replaced an essential gene back into the genome that was present in the middle of a cluster of non-essential genes, while deleting the non-essential gene cluster, again with low backgrounds of transformation and high efficiency.Although we have demonstrated the feasibility of TREC-IN in gene complementation and genome minimization studies in Mmc, the applicability of TREC-IN ranges widely. This method proves to be a valuable genetic tool that can be extended for genomic engineering in other genetically intractable organisms, where it may be implemented in elucidating specific metabolic pathways and in rationale vaccine design
The Structure of a Thermophilic Kinase Shapes Fitness upon Random Circular Permutation
Proteins
can be engineered for synthetic biology through circular
permutation, a sequence rearrangement in which native protein termini
become linked and new termini are created elsewhere through backbone
fission. However, it remains challenging to anticipate a proteinâs
functional tolerance to circular permutation. Here, we describe new
transposons for creating libraries of randomly circularly permuted
proteins that minimize peptide additions at their termini, and we
use transposase mutagenesis to study the tolerance of a thermophilic
adenylate kinase (AK) to circular permutation. We find that libraries
expressing permuted AKs with either short or long peptides amended
to their N-terminus yield distinct sets of active variants and present
evidence that this trend arises because permuted protein expression
varies across libraries. Mapping all sites that tolerate backbone
cleavage onto AK structure reveals that the largest contiguous regions
of sequence that lack cleavage sites are proximal to the phosphotransfer
site. A comparison of our results with a range of structure-derived
parameters further showed that retention of function correlates to
the strongest extent with the distance to the phosphotransfer site,
amino acid variability in an AK family sequence alignment, and residue-level
deviations in superimposed AK structures. Our work illustrates how
permuted protein libraries can be created with minimal peptide additions
using transposase mutagenesis, and it reveals a challenge of maintaining
consistent expression across permuted variants in a library that minimizes
peptide additions. Furthermore, these findings provide a basis for
interpreting responses of thermophilic phosphotransferases to circular
permutation by calibrating how different structure-derived parameters
relate to retention of function in a cellular selection
Selection for constrained peptides that bind to a single target protein
AbstractPeptide secondary metabolites are common in nature and have diverse pharmacologically-relevant functions, from antibiotics to cross-kingdom signaling. Here, we present a method to design large libraries of modified peptides in Escherichia coli and screen them in vivo to identify those that bind to a single target-of-interest. Constrained peptide scaffolds were produced using modified enzymes gleaned from microbial RiPP (ribosomally synthesized and post-translationally modified peptide) pathways and diversified to build large libraries. The binding of a RiPP to a protein target leads to the intein-catalyzed release of an RNA polymerase Ï factor, which drives the expression of selectable markers. As a proof-of-concept, a selection was performed for binding to the SARS-CoV-2 Spike receptor binding domain. A 1625 Da constrained peptide (AMK-1057) was found that binds with similar affinity (990â±â5ânM) as an ACE2-derived peptide. This demonstrates a generalizable method to identify constrained peptides that adhere to a single protein target, as a step towards âmolecular gluesâ for therapeutics and diagnostics.</jats:p