545 research outputs found

    Breather decay into a vortex/anti-vortex pair in a Josephson Ladder

    Get PDF
    We present experimental evidence for a new behavior which involves discrete breathers and vortices in a Josephson Ladder. Breathers can be visualized as the creation and subsequent annihilation of vortex/anti-vortex pairs. An externally applied magnetic field breaks the vortex/anti-vortex symmetry and causes the breather to split apart. The motion of the vortex or anti-vortex creates multi-site breathers, which are always to one side or the other of the original breather depending on the sign of the applied field. This asymmetry in applied field is experimentally observed.Comment: 10 pages, 5 figure

    Spin-dependent resonant tunneling through semimetallic ErAs quantum wells

    Full text link
    Resonant tunneling through semimetallic ErAs quantum wells embedded in GaAs structures with AlAs barriers was recently found to exhibit an intriguing behavior in magnetic fields which is explained in terms of tunneling selection rules and the spin-polarized band structure including spin-orbit coupling.Comment: 4 pages, figures supplied as self-unpacking figures.uu, uses epsfig.sty to incorporate figures in preprin

    Impact of time-ordered measurements of the two states in a niobium superconducting qubit structure

    Full text link
    Measurements of thermal activation are made in a superconducting, niobium Persistent-Current (PC) qubit structure, which has two stable classical states of equal and opposite circulating current. The magnetization signal is read out by ramping the bias current of a DC SQUID. This ramping causes time-ordered measurements of the two states, where measurement of one state occurs before the other. This time-ordering results in an effective measurement time, which can be used to probe the thermal activation rate between the two states. Fitting the magnetization signal as a function of temperature and ramp time allows one to estimate a quality factor of 10^6 for our devices, a value favorable for the observation of long quantum coherence times at lower temperatures.Comment: 14 pages, 4 figure

    DC measurements of macroscopic quantum levels in a superconducting qubit structure with a time-ordered meter

    Full text link
    DC measurements are made in a superconducting, persistent current qubit structure with a time-ordered meter. The persistent-current qubit has a double-well potential, with the two minima corresponding to magnetization states of opposite sign. Macroscopic resonant tunneling between the two wells is observed at values of energy bias that correspond to the positions of the calculated quantum levels. The magnetometer, a Superconducting Quantum Interference Device (SQUID), detects the state of the qubit in a time-ordered fashion, measuring one state before the other. This results in a different meter output depending on the initial state, providing different signatures of the energy levels for each tunneling direction. From these measurements, the intrawell relaxation time is found to be about 50 microseconds.Comment: 17 pages, 7 figure

    Multi-component Transparent Conducting Oxides: Progress in Materials Modelling

    Full text link
    Transparent conducting oxides (TCOs) play an essential role in modern optoelectronic devices through their combination of electrical conductivity and optical transparency. We review recent progress in our understanding of multi-component TCOs formed from solid-solutions of ZnO, In2O3, Ga2O3 and Al2O3, with a particular emphasis on the contributions of materials modelling, primarily based on Density Functional Theory. In particular, we highlight three major results from our work: (i) the fundamental principles governing the crystal structures of multi-component oxide structures including (In2O3)(ZnO)n, named IZO, and (In2O3)m(Ga2O3)l(ZnO)n, named IGZO; (ii) the relationship between elemental composition and optical and electrical behaviour, including valence band alignments; (iii) the high-performance of amorphous oxide semiconductors. From these advances, the challenge of the rational design of novel electroceramic materials is discussed.Comment: Part of a themed issue of Journal of Physics: Condensed Matter on "Semiconducting Oxides". In Press (2011

    Second harmonic generation in SiC polytypes

    Full text link
    LMTO calculations are presented for the frequency dependent second harmonic generation (SHG) in the polytypes 2H, 4H, 6H, 15R and 3C of SiC. All independent tensor components are calculated. The spectral features and the ratios of the 333 to 311 tensorial components are studied as a function of the degree of hexagonality. The relationship to the linear optical response and the underlying band structure are investigated. SHG is suggested to be a sensitive tool for investigating the near band edge interband excitations.Comment: 12 pages, 10 figure

    First principles study of the origin and nature of ferromagnetism in (Ga,Mn)As

    Full text link
    The properties of diluted Ga1x_{1-x}Mnx_xAs are calculated for a wide range of Mn concentrations within the local spin density approximation of density functional theory. M\"ulliken population analyses and orbital-resolved densities of states show that the configuration of Mn in GaAs is compatible with either 3d5^5 or 3d6^6, however the occupation is not integer due to the large pp-dd hybridization between the Mn dd states and the valence band of GaAs. The spin splitting of the conduction band of GaAs has a mean field-like linear variation with the Mn concentration and indicates ferromagnetic coupling with the Mn ions. In contrast the valence band is antiferromagnetically coupled with the Mn impurities and the spin splitting is not linearly dependent on the Mn concentration. This suggests that the mean field approximation breaks down in the case of Mn-doped GaAs and corrections due to multiple scattering must be considered. We calculate these corrections within a simple free electron model and find good agreement with our {\it ab initio} results if a large exchange constant (Nβ=4.5N\beta=-4.5eV) is assumed.Comment: 15 pages, 14 figure

    Atomistic spin model simulations of magnetic nanomaterials

    Get PDF
    Atomistic modelling of magnetic materials provides unprecedented detail about the underlying physical processes that govern their macroscopic properties, and allows the simulation of complex effects such as surface anisotropy, ultrafast laser-induced spin dynamics, exchange bias, and microstructural effects. Here we present the key methods used in atomistic spin models which are then applied to a range of magnetic problems. We detail the parallelization strategies used which enable the routine simulation of extended systems with full atomistic resolution

    Pilfering for survival: how health workers use access to drugs as a coping strategy

    Get PDF
    BACKGROUND: Coping strategies have, in some countries, become so prevalent that it has been widely assumed that the very notion of civil services ethos has completely – and possibly irreversibly – disappeared. This paper describes the importance and the nature of pilfering of drugs by health staff in Mozambique and Cape Verde, as perceived by health professionals from these countries. Their opinions provide pointers as to how to tackle these problems. METHODS: This study is based on a self-administered questionnaire addressed to a convenience sample of health workers in Mozambique and in Cape Verde. RESULTS: The study confirms that misuse of access to pharmaceuticals has become a key element in the coping strategies health personnel develop to deal with difficult living conditions. Different professional groups (mis)use their privileged access in different ways, but doctors diversify most. The study identifies the reasons given for misusing access to drugs, shows how the problem is perceived by the health workers, and discusses the implications for finding solutions to the problem. Our findings reflect, from the health workers themselves, a conflict between their self image of what it means to be an honest civil servant who wants to do a decent job, and the brute facts of life that make them betray that image. The manifest unease that this provokes is an important observation as such. CONCLUSION: Our findings suggest that, even in the difficult circumstances observed in many countries, behaviours that depart from traditional civil servant deontology have not been interiorised as a norm. This ambiguity indicates that interventions to mitigate the erosion of proper conduct would be welcome. The time to act is now, before small-scale individual coping grows into large-scale, well-organized crime

    Dose-Response Aligned Circuits in Signaling Systems

    Get PDF
    Cells use biological signal transduction pathways to respond to environmental stimuli and the behavior of many cell types depends on precise sensing and transmission of external information. A notable property of signal transduction that was characterized in the Saccharomyces cerevisiae yeast cell and many mammalian cells is the alignment of dose-response curves. It was found that the dose response of the receptor matches closely the dose responses of the downstream. This dose-response alignment (DoRA) renders equal sensitivities and concordant responses in different parts of signaling system and guarantees a faithful information transmission. The experimental observations raise interesting questions about the nature of the information transmission through DoRA signaling networks and design principles of signaling systems with this function. Here, we performed an exhaustive computational analysis on network architectures that underlie the DoRA function in simple regulatory networks composed of two and three enzymes. The minimal circuits capable of DoRA were examined with Michaelis-Menten kinetics. Several motifs that are essential for the dynamical function of DoRA were identified. Systematic analysis of the topology space of robust DoRA circuits revealed that, rather than fine-tuning the network's parameters, the function is primarily realized by enzymatic regulations on the controlled node that are constrained in limiting regions of saturation or linearity
    corecore