12,031 research outputs found

    The body in the library: adventures in realism

    Get PDF
    This essay looks at two aspects of the virtual ‘material world’ of realist fiction: objects encountered by the protagonist and the latter’s body. Taking from Sartre two angles on the realist pact by which readers agree to lend their bodies, feelings, and experiences to the otherwise ‘languishing signs’ of the text, it goes on to examine two sets of first-person fictions published between 1902 and 1956 — first, four modernist texts in which banal objects defy and then gratify the protagonist, who ends up ready and almost able to write; and, second, three novels in which the body of the protagonist is indeterminate in its sex, gender, or sexuality. In each of these cases, how do we as readers make texts work for us as ‘an adventure of the body’

    Double wells, scalar fields and quantum phase transitions in ions traps

    Full text link
    Since Hund's work on the ammonia molecule, the double well potential has formed a key paradigm in physics. Its importance is further underlined by the central role it plays in the Landau theory of phase transitions. Recently, the study of entanglement properties of many-body systems has added a new angle to the study of quantum phase transitions of discrete and continuous degrees of freedom, i.e., spin and harmonic chains. Here we show that control of the radial degree of freedom of trapped ion chains allows for the simulation of linear and non-linear Klein-Gordon fields on a lattice, in which the parameters of the lattice, the non-linearity and mass can be controlled at will. The system may be driven through a phase transition creating a double well potential between different configurations of the ion crystal. The dynamics of the system are controllable, local properties are measurable and tunnelling in the double well potential would be observable.Comment: 6 pages, 5 figure

    A Compact Microchip-Based Atomic Clock Based on Ultracold Trapped Rb Atoms

    Full text link
    We propose a compact atomic clock based on ultracold Rb atoms that are magnetically trapped near the surface of an atom microchip. An interrogation scheme that combines electromagnetically-induced transparency (EIT) with Ramsey's method of separated oscillatory fields can achieve atomic shot-noise level performance of 10^{-13}/sqrt(tau) for 10^6 atoms. The EIT signal can be detected with a heterodyne technique that provides noiseless gain; with this technique the optical phase shift of a 100 pW probe beam can be detected at the photon shot-noise level. Numerical calculations of the density matrix equations are used to identify realistic operating parameters at which AC Stark shifts are eliminated. By considering fluctuations in these parameters, we estimate that AC Stark shifts can be canceled to a level better than 2*10^{-14}. An overview of the apparatus is presented with estimates of duty cycle and power consumption.Comment: 15 pages, 11 figures, 5 table

    Laser cooling in the Penning trap: an analytical model for cooling rates in the presence of an axializing field

    Full text link
    Ions stored in Penning traps may have useful applications in the field of quantum information processing. There are, however, difficulties associated with the laser cooling of one of the radial motions of ions in these traps, namely the magnetron motion. The application of a small radio-frequency quadrupolar electric potential resonant with the sum of the two radial motional frequencies has been shown to couple these motions and to lead to more efficient laser cooling. We present an analytical model that enables us to determine laser cooling rates in the presence of such an 'axializing' field. It is found that this field leads to an averaging of the laser cooling rates for the two motions and hence improves the overall laser cooling efficiency. The model also predicts shifts in the motional frequencies due to the axializing field that are in qualitative agreement with those measured in recent experiments. It is possible to determine laser cooling rates experimentally by studying the phase response of the cooled ions to a near resonant excitation field. Using the model developed in this paper, we study the expected phase response when an axializing field is present.Comment: 22 pages, 7 figure

    Doppler-free laser spectroscopy of buffer gas cooled molecular radicals

    Full text link
    We demonstrate Doppler-free saturated absorption spectroscopy of cold molecular radicals formed by laser ablation inside a cryogenic buffer gas cell. By lowering the temperature, congested regions of the spectrum can be simplified, and by using different temperatures for different regions of the spectrum a wide range of rotational states can be studied optimally. We use the technique to study the optical spectrum of YbF radicals with a resolution of 30 MHz, measuring the magnetic hyperfine parameters of the electronic ground state. The method is suitable for high resolution spectroscopy of a great variety of molecules at controlled temperature and pressure, and is particularly well-suited to those that are difficult to produce in the gas phase.Comment: 11 pages, 4 figure

    Type I D-branes in an H-flux and twisted KO-theory

    Full text link
    Witten has argued that charges of Type I D-branes in the presence of an H-flux, take values in twisted KO-theory. We begin with the study of real bundle gerbes and their holonomy. We then introduce the notion of real bundle gerbe KO-theory which we establish is a geometric realization of twisted KO-theory. We examine the relation with twisted K-theory, the Chern character and provide some examples. We conclude with some open problems.Comment: 23 pages, Latex2e, 2 new references adde
    corecore