18 research outputs found

    Primer Sequence Modification Enhances Hepatitis C Virus Genotype Coverage

    No full text

    Comparative Evaluation of Three Commercial Systems for Nucleic Acid Extraction from Urine Specimens

    No full text
    A nucleic acid extraction system that can handle small numbers of specimens with a short test turnaround time and short hands-on time is desirable for emergent testing. We performed a comparative validation on three systems: the MagNA Pure compact system (Compact), the NucliSens miniMAG extraction instrument (miniMAG), and the BioRobot EZ1 system (EZ1). A total of 75 urine specimens submitted for polyomavirus BK virus detection were used. The human β-actin gene was detected on 75 (100%), 75 (100%), and 72 (96%) nucleic acid extracts prepared by the miniMAG, EZ1, and Compact, respectively. The miniMAG produced the highest quantity of nucleic acids and the best precision among the three systems. The agreement rate was 100% for BKV detection on nucleic acid extracts prepared by the three extraction systems. When a full panel of specimens was run, the hands-on time and test turnaround time were 105.7 and 121.1 min for miniMAG, 6.1 and 22.6 min for EZ1, and 7.4 and 33.7 min for Compact, respectively. The EZ1 and Compact systems processed automatic nucleic acid extraction properly, providing a good solution to the need for sporadic but emergent specimen detection. The miniMAG yielded the highest quantity of nucleic acids, suggesting that this system would be the best for specimens containing a low number of microorganisms of interest

    Simultaneous Amplification and Identification of 25 Human Papillomavirus Types with Templex Technology

    No full text
    The majority of existing human papillomavirus (HPV) genotyping assays are based on multiplex PCR using consensus or degenerate primers. We developed a Templex HPV assay that simultaneously detects and identifies 25 common HPV genotypes in a single-tube reaction using type-specific primers for the HPV-specific E6 and E7 genes. The analytical sensitivities of the Templex assay for HPV type 16 (HPV-16), -18, and -56 were 20, 100, and 20 copies per reaction mixture, respectively. The Templex assay provides semiquantitative information on each type when multiple HPV types coexist in one reaction. We tested 109 clinical cervical specimens previously evaluated with the Digene HC2 high-risk HPV DNA test and found 95.4% concordance between the assay results. The Templex assay provided type-specific results and found multiple types in 29.2% (14 of 48) of high-risk HPV-positive samples. The entire Templex procedure, including DNA extraction, can be completed within 5 hours, providing a rapid and reliable diagnostic tool for HPV detection and typing that is amenable to automation

    Simultaneous Detection and High-Throughput Identification of a Panel of RNA Viruses Causing Respiratory Tract Infections▿

    No full text
    Clinical presentations for viral respiratory tract infections are often nonspecific, and a rapid, high-throughput laboratory technique that can detect a panel of common viral pathogens is clinically desirable. We evaluated two multiplex reverse transcription-PCR (RT-PCR) products coupled with microarray-based systems for simultaneous detection of common respiratory tract viral pathogens. The NGEN respiratory virus analyte-specific assay (Nanogen, San Diego, CA) detects influenza A virus (Flu-A) and Flu-B, parainfluenza virus 1 (PIV-1), PIV-2, and PIV-3, and respiratory syncytial virus (RSV), while the ResPlex II assay (Genaco Biomedical Products, Inc., Huntsville, AL) detects Flu-A, Flu-B, PIV-1, PIV-2, PIV-3, PIV-4, RSV, human metapneumovirus (hMPV), rhinoviruses (RhVs), enteroviruses (EnVs), and severe acute respiratory syndrome (SARS) coronavirus (CoV). A total of 360 frozen respiratory specimens collected for a full year were tested, and results were compared to those obtained with a combined reference standard of cell culture and monoplex real-time TaqMan RT-PCR assays. NGEN and ResPlex II gave comparable sensitivities for Flu-A (82.8 to 86.2%), Flu-B (90.0 to 100.0%), PIV-1 (87.5 to 93.8%), PIV-3 (66.7 to 72.2%), and RSV (63.3 to 73.3%); both assays achieved excellent specificities (99.1 to 100.0%) for these five common viruses. The ResPlex II assay detected hMPV in 13 (3.6%) specimens, with a sensitivity of 80.0% and specificity of 99.7%. The ResPlex II assay also differentiated RSV-A and RSV-B and gave positive results for RhV and EnV in 31 (8.6%) and 19 (5.3%) specimens, respectively. PIV-2, PIV-4, and SARS CoV were not detected in the specimens tested. The two systems can process 80 (NGEN) and 96 (ResPlex II) tests per run, with a hands-on time of approximately 60 min and test turnaround times of 6 h (ResPlex II) and 9 h (NGEN). Multiple-panel testing detected an additional unsuspected 9 (3.4%) PIV-1 and 10 (3.7%) PIV-3 infections. While test sensitivities for RSV and PIV-3 need improvement, both the NGEN and ResPlex II assays provide user-friendly and high-throughput tools for simultaneous detection and identification of a panel of common respiratory viral pathogens in a single test format. The multiplex approach enhances diagnosis through detection of respiratory viral etiologic agents in cases in which the presence of the agent was not suspected and a test was not ordered by the clinicians

    C. Diff Quik Chek Complete Enzyme Immunoassay Provides a Reliable First-Line Method for Detection of Clostridium difficile in Stool Specimens▿

    No full text
    We evaluated a single membrane device assay for simultaneously detecting both Clostridium difficile glutamate dehydrogenase (GDH) and toxin A/B antigens against a standard that combines two PCR assays and cytotoxigenic culture. Results showing dual GDH and toxin A/B antigen positives and negatives can be reported immediately as true positives and negatives, respectively. Specimens with discrepant results for GDH and toxins A/B, which comprised 13.2% of the specimens, need to be retested
    corecore