3 research outputs found

    TernausNetV2: Fully Convolutional Network for Instance Segmentation

    Full text link
    The most common approaches to instance segmentation are complex and use two-stage networks with object proposals, conditional random-fields, template matching or recurrent neural networks. In this work we present TernausNetV2 - a simple fully convolutional network that allows extracting objects from a high-resolution satellite imagery on an instance level. The network has popular encoder-decoder type of architecture with skip connections but has a few essential modifications that allows using for semantic as well as for instance segmentation tasks. This approach is universal and allows to extend any network that has been successfully applied for semantic segmentation to perform instance segmentation task. In addition, we generalize network encoder that was pre-trained for RGB images to use additional input channels. It makes possible to use transfer learning from visual to a wider spectral range. For DeepGlobe-CVPR 2018 building detection sub-challenge, based on public leaderboard score, our approach shows superior performance in comparison to other methods. The source code corresponding pre-trained weights are publicly available at https://github.com/ternaus/TernausNetV

    Feature Pyramid Network for Multi-Class Land Segmentation

    Full text link
    Semantic segmentation is in-demand in satellite imagery processing. Because of the complex environment, automatic categorization and segmentation of land cover is a challenging problem. Solving it can help to overcome many obstacles in urban planning, environmental engineering or natural landscape monitoring. In this paper, we propose an approach for automatic multi-class land segmentation based on a fully convolutional neural network of feature pyramid network (FPN) family. This network is consisted of pre-trained on ImageNet Resnet50 encoder and neatly developed decoder. Based on validation results, leaderboard score and our own experience this network shows reliable results for the DEEPGLOBE - CVPR 2018 land cover classification sub-challenge. Moreover, this network moderately uses memory that allows using GTX 1080 or 1080 TI video cards to perform whole training and makes pretty fast predictions
    corecore