3 research outputs found

    Tannic Acid Mitigates Rotenone-Induced Dopaminergic Neurodegeneration by Inhibiting Inflammation, Oxidative Stress, Apoptosis, and Glutamate Toxicity in Rats

    No full text
    Parkinson’s disease (PD), a movement disorder, is a neurodegenerative disease characterized by the degeneration of dopaminergic neurons in the substantia nigra pars compacta (SNpc) region of the brain. The etiopathogenesis of PD involves increased oxidative stress, augmented inflammation, impaired autophagy, accumulation of α-synuclein, and α-Glutamate neurotoxicity. The treatment of PD is limited and there is a lack of agents to prevent the disease/delay its progression and inhibit the onset of pathogenic events. Many agents of natural and synthetic origin have been investigated employing experimental models of PD, mimicking human PD. In the present study, we assessed the effect of tannic acid (TA) in a rodent model of PD induced by rotenone (ROT), a pesticide and an environmental toxin of natural origin reported to cause PD in agricultural workers and farmers. Rotenone (2.5 mg/kg/day, i.p.) was administered for 28 days, and TA (50 mg/kg, orally) was administered 30 min before ROT injections. The study results showed an increase in oxidative stress, as evidenced by the depletion of endogenous antioxidants and enhanced formation of lipid peroxidation products, along with the onset of inflammation following a rise in inflammatory mediators and proinflammatory cytokines. ROT injections have also augmented apoptosis, impaired autophagy, promoted synaptic loss, and perturbed α-Glutamate hyperpolarization in rats. ROT injections also induced the loss of dopaminergic neurons subsequent to the activation of microglia and astrocytes. However, TA treatment was observed to reduce lipid peroxidation, prevent loss of endogenous antioxidants, and inhibit the release and synthesis of proinflammatory cytokines, in addition to the favorable modulation of apoptosis and autophagic pathways. Treatment with TA also attenuated the activation of microglia and astrocytes along with preservation of dopaminergic neurons following reduced loss of dopaminergic neurodegeneration and inhibition of synaptic loss and α-Glutamate cytotoxicity. The effects of TA in ROT-induced PD were attributed to the antioxidant, anti-inflammatory, antiapoptotic, and neurogenesis properties. Based on the present study findings, it can be concluded that TA may be a promising novel therapeutic candidate for pharmaceutical as well as nutraceutical development owing to its neuroprotective properties in PD. Further regulatory toxicology and translational studies are suggested for future clinical usage in PD

    α-Bisabolol Attenuates NF-κB/MAPK Signaling Activation and ER-Stress-Mediated Apoptosis by Invoking Nrf2-Mediated Antioxidant Defense Systems against Doxorubicin-Induced Testicular Toxicity in Rats

    No full text
    The present study investigated the effects of α-bisabolol on DOX-induced testicular damage in rats. Testicular damage was induced in rats by injecting DOX (12.5 mg/kg, i.p., single dose) into rats. α-Bisabolol (25 mg/kg, i.p.) was administered to the rats along with DOX pre- and co-treatment daily for a period of 5 days. DOX-injected rats showed a decrease in absolute testicular weight and relative testicular weight ratio along with concomitant changes in the levels/expression levels of oxidative stress markers and Nrf2 expression levels in the testis. DOX injection also triggered the activation of NF-κB/MAPK signaling and increased levels/expression levels of pro-inflammatory cytokines (TNF-α, IL-6, and IL-1β) and inflammatory mediators (iNOS and COX-2) in the testis. DOX triggered apoptosis, manifested by an increment in the expression levels of pro-apoptotic markers (Bax, Bcl2, cleaved caspase-3 and -9, and cytochrome-C) and a decline in the expression levels of anti-apoptotic markers (Bcl-xL and Bcl2) in the testis. Additionally, light microscopy revealed the changes in testicular architecture. α-Bisabolol rescued alterations in the testicular weight; restored all biochemical markers; modulated the expression levels of Nrf2-mediated antioxidant responses, NF-κB/MAPK signaling, endoplasmic reticulum (ER) stress, and apoptosis markers in DOX-injected testicular toxicity in rats. Based on our findings, it can be concluded that α-bisabolol has the potential to attenuate DOX-induced testicular injury by modifying NF-κB/MAPK signaling and the ER-stress-mediated mitochondrial pathway of apoptosis by invoking Nrf2-dependent antioxidant defense systems in rats. Based on the findings of the present study, α-bisabolol could be suggested for use as an agent or adjuvant with chemotherapeutic drugs to attenuate their deleterious effects of DOX on many organs including the testis. However, further regulatory toxicology and preclinical studies are necessary before making recommendations in clinical tests

    α-Bisabolol, a Dietary Sesquiterpene, Attenuates Doxorubicin-Induced Acute Cardiotoxicity in Rats by Inhibiting Cellular Signaling Pathways, Nrf2/Keap-1/HO-1, Akt/mTOR/GSK-3β, NF-κB/p38/MAPK, and NLRP3 Inflammasomes Regulating Oxidative Stress and Inflammatory Cascades

    No full text
    Cancer chemotherapy with doxorubicin (DOX) may have multiorgan toxicities including cardiotoxicity, and this is one of the major limitations of its clinical use. The present study aimed to evaluate the cardioprotective role of α-Bisabolol (BSB) in DOX-induced acute cardiotoxicity in rats and the underlying pharmacological and molecular mechanisms. DOX (12.5 mg/kg, single dose) was injected intraperitoneally into the rats for induction of acute cardiotoxicity. BSB was given orally to rats (25 mg/kg, p.o. twice daily) for a duration of five days. DOX administration induced cardiac dysfunction as evidenced by altered body weight, hemodynamics, and release of cardio-specific diagnostic markers. The occurrence of oxidative stress was evidenced by a significant decline in antioxidant defense along with a rise in lipid peroxidation and hyperlipidemia. Additionally, DOX also increased the levels and expression of proinflammatory cytokines and inflammatory mediators, as well as activated NF-κB/MAPK signaling in the heart, following alterations in the Nrf2/Keap-1/HO-1 and Akt/mTOR/GSK-3β signaling. DOX also perturbed NLRP3 inflammasome activation-mediated pyroptosis in the myocardium of rats. Furthermore, histopathological studies revealed cellular alterations in the myocardium. On the contrary, treatment with BSB has been observed to preserve the myocardium and restore all the cellular, molecular, and structural perturbations in the heart tissues of DOX-induced cardiotoxicity in rats. Results of the present study clearly demonstrate the protective role of BSB against DOX-induced cardiotoxicity, which is attributed to its potent antioxidant, anti-inflammatory, and antihyperlipidemic effects resulting from favorable modulation of numerous cellular signaling regulatory pathways, viz., Nrf2/Keap-1/HO-1, Akt/mTOR/GSK-3β, NF-κB/p38/MAPK, and NLRP3 inflammasomes, in countering the cascades of oxidative stress and inflammation. The observations suggest that BSB can be a promising agent or an adjuvant to limit the cardiac injury caused by DOX. Further studies including the role in tumor-bearing animals as well as regulatory toxicology are suggested
    corecore