93 research outputs found

    Renal primitive neuroectodermal tumor: does age at diagnosis impact outcomes?

    Get PDF
    Primitive neuroectodermal tumor (PNET) of the kidney is a rare and highly malignant neoplasm. The median age for renal PNET is 27 years but it can be seen also in a wide age range between 3 and 78 years. We performed a Medline search for the term renal PNET and identified 79 cases up till December of 2010. We report here a new case of renal PNET and a literature review for published data for evaluation of clinicopathological prognostic factors, with an emphasis on prognosis in two groups of adults and children-adolescents: 18 years of age or under and over 18 years

    Attenuated p53 activation in tumour-associated stromal cells accompanies decreased sensitivity to etoposide and vincristine

    Get PDF
    Alterations in the tumour suppressor p53 have been reported in tumour-associated stromal cells; however, the consequence of these alterations has not been elucidated. We investigated p53 status and responses to p53-activating drugs using tumour-associated stromal cells from A375 melanoma and PC3 prostate carcinoma xenografts, and a spontaneous prostate tumour model (TRAMP). p53 accumulation after treatment with different p53-activating drugs was diminished in tumour-associated stromal cells compared to normal stromal cells. Tumour-associated stromal cells were also less sensitive to p53-activating drugs – this effect could be reproduced in normal stromal cells by p53 knockdown. Unlike normal stromal cells, tumour stromal cells failed to arrest in G2 after etoposide treatment, failed to upregulate p53-inducible genes, and failed to undergo apoptosis after treatment with vincristine. The lower levels of p53 in tumour stromal cells accompanied abnormal karyotypes and multiple centrosomes. Impaired p53 function in tumour stroma might be related to genomic instability and could enable stromal cell survival in the destabilising tumour microenvironment

    Transient Posttransplant Graft-versus-Host Lymphadenopathy

    No full text

    Bronchopulmonary dysplasia of the premature baby: an immunohistochemical study

    No full text
    Prematurely born infants who required assisted ventilation may develop chronic lung disease or bronchopulmonary dysplasia (BPD). The cells involved in the reparative process of the premature lung are not well defined. The repair of injured tissues is a highly standardized process and the most important cells are activated (modulated) fibroblasts (myofibroblasts). A key cytokine in controlling repair is transforming growth factor-beta (TGF-beta). To characterize the cells involved in the repair process of the premature lung, we employed immunocytochemical techniques and examined the lungs of 39 autopsied premature babies who had neonatal respiratory distress syndrome (RDS). All were treated in neonatal intensive care units and required mechanical ventilation and supplemental oxygen; all survived for at least 12 hours. Antibodies were employed against vimentin, alpha-smooth muscle (alpha-SM) actin, total muscle actin, desmin, MAC387, and TGF-beta. Our study indicates that myofibroblasts are normally present along terminal airways in the developing lung. These cells increase in number some days after lung injury, form bundles of cells encircling terminal air spaces, and acquire desmin contractile filaments shortly thereafter. Myofibroblasts do not lose their contractile filaments with time, suggesting a conversion to smooth muscle metaplasia. The proliferation and migration of such myofibroblasts at sites of lung injury is associated with the presence of TGF-beta. These findings suggest that myofibroblasts play an important role in premature lung repair. They may point the way to experimental and clinical trials that will identify drugs antagonistic to TGF-beta (or other cytokines). Such antagonists may protect the neonates who are at high risk of developing BP
    • …
    corecore