3 research outputs found

    Leveraging Deep Learning Techniques and Integrated Omics Data for Tailored Treatment of Breast Cancer

    No full text
    Multiomics data of cancer patients and cell lines, in synergy with deep learning techniques, have aided in unravelling predictive problems related to cancer research and treatment. However, there is still room for improvement in the performance of the existing models based on the aforementioned combination. In this work, we propose two models that complement the treatment of breast cancer patients. First, we discuss our deep learning-based model for breast cancer subtype classification. Second, we propose DCNN-DR, a deep convolute.ion neural network-drug response method for predicting the effectiveness of drugs on in vitro and in vivo breast cancer datasets. Finally, we applied DCNN-DR for predicting effective drugs for the basal-like breast cancer subtype and validated the results with the information available in the literature. The models proposed use late integration methods and have fairly better predictive performance compared to the existing methods. We use the Pearson correlation coefficient and accuracy as the performance measures for the regression and classification models, respectively

    An Estimate of Global Anthrax Prevalence in Livestock: A Meta-analysis

    Get PDF
    Background and Aim: Anthrax, caused by the soil-borne spore-forming bacteria called Bacillus anthracis, is a zoonotic disease that persists worldwide in livestock and wildlife and infects humans. It is a great hazard to livestock; henceforth, evaluating the global concerns about the disease occurrence in livestock is essential. This study was conducted to estimate the global prevalence of anthrax and predict high-risk regions, which could be an input to veterinarians to take necessary steps to control and avoid the disease. Materials and Methods: A literature review was performed using online databases, namely, PubMed, Google Scholar, Scopus, Biomed Central, and Science Direct, to extract relevant publications worldwide between 1992 and 2020. Initially, 174 articles were selected, and after scrutinizing, 24 articles reporting the prevalence of anthrax were found to be adequate for the final meta-analysis. The statistical study was accompanied by employing fixed effects and random effects models using R. Results: The pooled prevalence of anthrax globally was 28% (95% confidence interval, 26-30%) from 2452 samples through the fixed effects model. Continent-wise subgroup analysis through the random effects model revealed that the pooled prevalence of anthrax was highest in Africa (29%) and least in North America (21%). Conclusion: In these publications, anthrax causes economic loss to farmers and, thus, to the world. Hence, controlling anthrax infections in high-risk regions are essential by implementing appropriate control measures to decrease the effect of the disease, thereby reducing economic loss
    corecore