20 research outputs found

    Estimation of Genetic Diversity among Canola Accessions using Simple Sequence Repeat Markers

    Get PDF
    Genetic studies through molecular markers proved important to find out the genetic diversity of canola. In this study, 50 lines of canola were used to find the polymorphism using 15 SSR primers and investigated the genetic diversity, PIC values, frequency-based genetic distance, and allelic frequencies. Mean gene diversity, frequency-based genetic distance, and PIC values were 0.8777, 0.233 and 0.8666, respectively for the canola lines. A good range of genetic diversity was found among studied canola lines with value 85.91% polymorphism. Maximum and minimum genetic distances among 50 lines were 1 and 0.26, respectively. Accessions ACC-26068, ACC-24241, ACC-24244, ACC-24233, ACC-24423 and ACC-24224 have maximum genetic distance. Accessions ACC-24879 and ACC-24169 had minimum genetic distance i.e., 0.26. Dendrogram based on genetic distances showed four main clusters that were further dividing into several sub-clusters. The primers utilized in the present study, were valuable to identify different accessions of canola to find the variability present. This variability will be helpful to initiate the breeding program with their molecular genetic basis

    Effect of NaCl on Morphophysiological and Biochemical Responses in <i>Gossypium hirsutum</i> L.

    No full text
    Soil salinity is increasing due to several factors such as climate change and areas with uneven rainfall. This increase in level of salinity compelled the cotton breeders to develop a new germplasm that exhibit the suitable for salty soil. This study aimed to determine the salt tolerance of 50 accessions of Gossypium hirsutum in hydroponic conditions having three levels of NaCl, i.e., 0 mM, 150 mM, and 200 mM. The experiment was carried out in a completely randomized design with a factorial arrangement. Morphological, physiological, and biochemical attributes were estimated in these genotypes. The Na+/K+ ratio was determined by dry digestion method. Salt-susceptible and -tolerant genotypes were identified by biplot and cluster analysis. The genotypes showed significant differences for morphophysiological and biochemical parameters. In control, Cyto-515 showed enhanced growth with shoot length (30.20 cm), root length (20.63 cm), fresh shoot weight (2.34 g), and fresh root weight (0.93 g), while under 150 mM and 200 mM salinity levels, MNH-992 had the maximum root length (15.67 cm) and shoot length (24.67 cm). At a 150 mM salinity level, maximum levels of antioxidants were found in Kehkshan and CIM-595, while at a 200 mM salinity level, AA-703, CIM-595, and Kehkshan showed maximum values of antioxidants. The highest Na+/K+ ratio was observed in VH-363 and FH-114, while Kehkshan had lowest Na+/K+ ratio. The biplot analysis revealed that Kehkshan, CIM-595, VH-330, Cyto-178, MNH-992, and Cyto-515 were widely dispersed and distant from the origin, and exhibiting variability for morphophysiological and biochemical traits under the salt stress. In terms of performance across the treatments, accessions MNH-992, Kehkshan, Cyto-515, and CIM-595 performed significantly better. Peroxidase activity, proline contents, H2O2 determination, and Na+/K+ ratio were shown to be useful for the salt tolerance selection criteria. The potential of such salt tolerant accessions (MNH-992, Kehkshan, Cyto-515, and CIM-595) could be assessed after planting in salt affected areas and could be used in breeding programs for the development of diverse salt tolerant new genotypes of upland cotton

    Estimation of Drought Tolerance Indices in Upland Cotton under Water Deficit Conditions

    No full text
    Cotton is a precious commodity that offers raw material to the textile industry. This crop is grown in tropical and sub-tropical regions of the world. Abiotic stresses exerts negative impact on cotton production, but water scarcity has the worst impact. It is rising due to current situation, in which global warming is producing a decrease in precipitation while an increase in evapo-transpiration is causing an agricultural drought. Thus, it is a difficult task for cotton breeders to identify cotton lines that can respond to areas with limited water supplies without lowering yields and might be utilized as suitable parents in a breeding program to produce drought-tolerant indices. The primary objective of this research was the estimation of drought tolerance indices in upland cotton under water deficit conditions. For this purpose, fifty accessions of upland cotton were assessed for their ability to tolerate the water stress under three conditions, namely control, 50% FC, and 75% FC. These genotypes showed significant variations based on morpho-physiological and biochemical characteristics. At control conditions, these genotypes exhibited enhanced growth and better performance. Whereas, the behavior of some indices under 75% FC showed less growth as compared to control, while under the 50% FC highly significant reductions were observed among genotypes. The genotypes that are resistant to drought and those that are susceptible were found using the K-means cluster and biplot analysis. In terms of performance, the genotypes namely Cyto-515, CIM-595, FH-142, and IR-3701 exhibited relatively better in all the treatments and low excised leaf water loss, high relative water contents, chlorophyll contents, free proline contents, and peroxidase activity were observed to be useful selection criteria for drought resistance. These identified genotypes namely, Cyto-515, CIM-595, FH-142, and IR-3701 may be grown in water deficit areas of the country to assess their potential, could be used in breeding programs for development of germplasm suitable for water stress conditions

    Resistin Induces LIN28A-Mediated Let-7a Repression in Breast Cancer Cells Leading to IL-6 and STAT3 Upregulation

    No full text
    Downregulation of the Let-7 family of microRNAs (miRNAs) has been reported in several cancers, including breast malignancy; however, underlying mechanisms are not completely understood. Resistin is an important component of the tumor microenvironment, having a functional impact on the tumor cell phenotypes. Here, we examined the role of resistin in the regulation of Let-7 miRNAs and studied its downstream consequences. We found that resistin treatment led to the reduced expression of Let-7 family miRNAs in breast cancer (BC) cells, with the highest downregulation reported for Let-7a. Furthermore, resistin induced the expression of LIN28A, and its silencing abrogated resistin-mediated Let-7a suppression. Let-7a restoration or LIN28A silencing abolished the resistin-induced growth, clonogenicity, and sphere-forming ability of BC cells. Restoration of Let-7a also suppressed the resistin-induced expression of genes associated with growth, survival, and stemness. Pathway analysis suggested STAT3 as a putative central node associated with Let-7a-mediated gene regulation. In silico analysis identified STAT3 and its upstream modifier, IL-6, as putative Let-7a gene targets, which were later confirmed by 3′UTR-reporter assays. Together, our findings demonstrate a novel resistin/LIN28A/Let-7a/IL-6/STAT3 signaling axis supporting the growth and stemness of BC cells

    Molecular Drivers of Pancreatic Cancer Pathogenesis: Looking Inward to Move Forward

    No full text
    Pancreatic cancer (PC) continues to rank among the most lethal cancers. The consistent increase in incidence and mortality has made it the seventh leading cause of cancer-associated deaths globally and the third in the United States. The biggest challenge in combating PC is our insufficient understanding of the molecular mechanism(s) underlying its complex biology. Studies during the last several years have helped identify several putative factors and events, both genetic and epigenetic, as well as some deregulated signaling pathways, with implications in PC onset and progression. In this review article, we make an effort to summarize our current understanding of molecular and cellular events involved in the pathogenesis of pancreatic malignancy. Specifically, we provide up-to-date information on the genetic and epigenetic changes that occur during the initiation and progression of PC and their functional involvement in the pathogenic processes. We also discuss the impact of the tumor microenvironment on the molecular landscape of PC and its role in aggressive disease progression. It is envisioned that a better understanding of these molecular factors and the mechanisms of their actions can help unravel novel diagnostic and prognostic biomarkers and can also be exploited for future targeted therapies

    Looking at Cancer Health Disparities without the Colored Lenses

    Get PDF
    Cancer health disparities (CHDs), defined as&nbsp;the adverse differences in cancer incidence and mortality, are prevalent in certain racial and ethnic groups. Underlying causes of CHDs are multi-factorial and debatable. While low socioeconomic status, geographical location, lifestyle and behavioral factors are mostly believed to contribute to CHDs, regardless of ethnic and racial background, significant data now also exist to support a genetic basis of such disparities as well. Clearly, CHDs could best be understood by studying the interplay of multiple (genetic and non-genetic) factors and then translating the resulting knowledge into effective approaches for reducing the existing disparity gaps. This review article highlights these aspects in brief and calls the people of different expertise to work together to make an impact and tackle the challenges associated with CHDs
    corecore