35 research outputs found

    Over-expression of alpha-synuclein in human neural progenitors leads to specific changes in fate and differentiation

    Get PDF
    Missense mutations and extra copies of the alpha-Synuclein gene result in Parkinson disease (PD). Human stem and progenitor cells can be expanded from embryonic tissues and provide a source of non-transformed neural cells to explore the effects of these pathogenic mutations specifically in human nervous tissue. We over-expressed the wild type, A53T and A30P forms of alpha-synuclein in expanded populations of progenitors derived from the human fetal cortex. The protein localized in the nucleus and around microvesicles. Only the A53T form was acutely toxic, suggesting a unique vulnerability of these progenitors to this mutation. Interestingly, constitutive over-expression of wild-type alpha-synuclein progressively impaired the innate ability of progenitors to switch toward gliogenesis at later passages. To explore the effect of alpha-synuclein on neuronal subtypes selectively affected in PD, such as dopaminergic neurons, alpha-synuclein and its mutations were also over-expressed in terminally differentiating neuroectodermal cultures derived from human embryonic stem cells (hESC). Alpha-synuclein induced acute cytotoxicity and reduced the number of neurons expressing either tyrosine hydroxylase or gamma-aminobutyric acid over time. Consistent with the selective vulnerability of ventral midbrain dopaminergic neurons, alpha-synuclein cytotoxicity appeared most pronounced following FGF8/SHH specification and was decreased by inhibition of dopamine synthesis. Together, these data show that alpha-synuclein over-expressed in human neural embryonic cells results in patterns of degeneration that in some cases match features of Parkinson Disease. Thus, neural cells derived from hESC provide a useful model system to understand the development of alpha-synuclein-related pathologies and allow therapeutic drug screening

    Lentiviral vector-mediated genetic modification of human neural progenitor cells for ex vivo gene therapy

    Full text link
    Human neural progenitor cells (hNPC) hold great potential as an ex vivo system for delivery of therapeutic proteins to the central nervous system. When cultured as aggregates, termed neurospheres, hNPC are capable of significant in vitro expansion. In the current study, we present a robust method for lentiviral vector-mediated gene delivery into hNPC that maintains the differentiation and proliferative properties of neurosphere cultures while minimizing the amount of viral vector used and controlling the number of insertion sites per population. This method results in long-term, stable expression even after differentiation of the hNPC to neurons and astrocytes and allows for generation of equivalent transgenic populations of hNPC. In addition, the in vitro analysis presented predicts the behavior of transgenic lines in vivo when transplanted into a rodent model of Parkinson's disease. The methods presented provide a powerful tool for assessing the impact of factors such as promoter systems or different transgenes on the therapeutic utility of these cells

    Epineural optogenetic activation of nociceptors initiates and amplifies inflammation

    Full text link
    Activation of nociceptor sensory neurons by noxious stimuli both triggers pain and increases capillary permeability and blood flow to produce neurogenic inflammation1,2, but whether nociceptors also interact with the immune system remains poorly understood. Here we report a neurotechnology for selective epineural optogenetic neuromodulation of nociceptors and demonstrate that nociceptor activation drives both protective pain behavior and inflammation. The wireless optoelectronic system consists of sub-millimeter-scale light-emitting diodes embedded in a soft, circumneural sciatic nerve implant, powered and driven by a miniaturized head-mounted control unit. Photostimulation of axons in freely moving mice that express channelrhodopsin only in nociceptors resulted in behaviors characteristic of pain, reflecting orthodromic input to the spinal cord. It also led to immune reactions in the skin in the absence of inflammation and potentiation of established inflammation, a consequence of the antidromic activation of nociceptor peripheral terminals. These results reveal a link between nociceptors and immune cells, which might have implications for the treatment of inflammation

    The metabolite BH4 controls T cell proliferation in autoimmunity and cancer

    Full text link
    Genetic regulators and environmental stimuli modulate T cell activation in autoimmunity and cancer. The enzyme co-factor tetrahydrobiopterin (BH4) is involved in the production of monoamine neurotransmitters, the generation of nitric oxide, and pain1,2. Here we uncover a link between these processes, identifying a fundamental role for BH4 in T cell biology. We find that genetic inactivation of GTP cyclohydrolase 1 (GCH1, the rate-limiting enzyme in the synthesis of BH4) and inhibition of sepiapterin reductase (the terminal enzyme in the synthetic pathway for BH4) severely impair the proliferation of mature mouse and human T cells. BH4 production in activated T cells is linked to alterations in iron metabolism and mitochondrial bioenergetics. In vivo blockade of BH4 synthesis abrogates T-cell-mediated autoimmunity and allergic inflammation, and enhancing BH4 levels through GCH1 overexpression augments responses by CD4- and CD8-expressing T cells, increasing their antitumour activity in vivo. Administration of BH4 to mice markedly reduces tumour growth and expands the population of intratumoral effector T cells. Kynurenine—a tryptophan metabolite that blocks antitumour immunity—inhibits T cell proliferation in a manner that can be rescued by BH4. Finally, we report the development of a potent SPR antagonist for possible clinical use. Our data uncover GCH1, SPR and their downstream metabolite BH4 as critical regulators of T cell biology that can be readily manipulated to either block autoimmunity or enhance anticancer immunity

    The metabolite BH4 controls T cell proliferation in autoimmunity and cancer

    Full text link
    Genetic regulators and environmental stimuli modulate T cell activation in autoimmunity and cancer. The enzyme co-factor tetrahydrobiopterin (BH4) is involved in the production of monoamine neurotransmitters, the generation of nitric oxide, and pain1,2. Here we uncover a link between these processes, identifying a fundamental role for BH4 in T cell biology. We find that genetic inactivation of GTP cyclohydrolase 1 (GCH1, the rate-limiting enzyme in the synthesis of BH4) and inhibition of sepiapterin reductase (the terminal enzyme in the synthetic pathway for BH4) severely impair the proliferation of mature mouse and human T cells. BH4 production in activated T cells is linked to alterations in iron metabolism and mitochondrial bioenergetics. In vivo blockade of BH4 synthesis abrogates T-cell-mediated autoimmunity and allergic inflammation, and enhancing BH4 levels through GCH1 overexpression augments responses by CD4- and CD8-expressing T cells, increasing their antitumour activity in vivo. Administration of BH4 to mice markedly reduces tumour growth and expands the population of intratumoral effector T cells. Kynurenine—a tryptophan metabolite that blocks antitumour immunity—inhibits T cell proliferation in a manner that can be rescued by BH4. Finally, we report the development of a potent SPR antagonist for possible clinical use. Our data uncover GCH1, SPR and their downstream metabolite BH4 as critical regulators of T cell biology that can be readily manipulated to either block autoimmunity or enhance anticancer immunity

    The metabolite BH4 controls T cell proliferation in autoimmunity and cancer

    Full text link
    Genetic regulators and environmental stimuli modulate T cell activation in autoimmunity and cancer. The enzyme co-factor tetrahydrobiopterin (BH4) is involved in the production of monoamine neurotransmitters, the generation of nitric oxide, and pain(1,2). Here we uncover a link between these processes, identifying a fundamental role for BH4 in T cell biology. We find that genetic inactivation of GTP cyclohydrolase 1 (GCH1, the rate-limiting enzyme in the synthesis of BH4) and inhibition of sepiapterin reductase (the terminal enzyme in the synthetic pathway for BH4) severely impair the proliferation of mature mouse and human T cells. BH4 production in activated T cells is linked to alterations in iron metabolism and mitochondrial bioenergetics. In vivo blockade of BH4 synthesis abrogates T-cell-mediated autoimmunity and allergic inflammation, and enhancing BH4 levels through GCH1 overexpression augments responses by CD4-and CD8-expressing T cells, increasing their antitumour activity in vivo. Administration of BH4 to mice markedly reduces tumour growth and expands the population of intratumoral effector T cells. Kynurenine-a tryptophan metabolite that blocks antitumour immunity-inhibits T cell proliferation in a manner that can be rescued by BH4. Finally, we report the development of a potent SPR antagonist for possible clinical use. Our data uncover GCH1, SPR and their downstream metabolite BH4 as critical regulators of T cell biology that can be readily manipulated to either block autoimmunity or enhance anticancer immunity
    corecore