9 research outputs found
Quantum Reflection as a New Signature of Quantum Vacuum Nonlinearity
We show that photons subject to a spatially inhomogeneous electromagnetic
field can experience quantum reflection. Based on this observation, we propose
quantum reflection as a novel means to probe the nonlinearity of the quantum
vacuum in the presence of strong electromagnetic fields.Comment: 9 pages, 1 figure; some clarifications added, matches journal versio
Photon merging and splitting in electromagnetic field inhomogeneities
We investigate photon merging and splitting processes in inhomogeneous,
slowly varying electromagnetic fields. Our study is based on the three-photon
polarization tensor following from the Heisenberg-Euler effective action. We
put special emphasis on deviations from the well-known constant field results,
also revisiting the selection rules for these processes. In the context of
high-intensity laser facilities, we analytically determine compact expressions
for the number of merged/split photons as obtained in the focal spots of
intense laser beams. For the parameter range of a typical petawatt class laser
system as pump and a terawatt class laser as probe, we provide estimates for
the numbers of signal photons attainable in an actual experiment. The
combination of frequency upshifting, polarization dependence and scattering off
the inhomogeneities renders photon merging an ideal signature for the
experimental exploration of nonlinear quantum vacuum properties.Comment: 14 pages, 4 figure
Signatures of the quantum vacuum in inhomogeneous electromagnetic fields
Die Quantenelektrodynamik beschreibt das Vakuum als durchsetzt von virtuellen Elektron-Positron-Paaren, welche als Folge quantenmechanischer Nullpunktsfluktuationen auftreten. Diese ermöglichen nichtlineare Wechselwirkungen zwischen elektromagnetischen Feldern in Vakuum. Da diese erst bei extrem hohen Feldstärken sichtbar werden, gibt es bis heute keine experimentelle Bestätigung rein optischer Signaturen der Nichtlinearität des Quantenvakuums. In dieser Arbeit werden einige Signaturen des Quantenvakuums in inhomogenen elektromagnetischen Feldern untersucht. Die Betrachtung von inhomogenen Felder wird durch die rasante Entwicklung von Hochintensitätslasern, welche große Feldstärken erreichen können, motiviert. Diese Eigenschaft macht moderne Laser zu idealen Kandidaten zum Nachweis der nichtlinearen Eigenschaften des Quantenvakuums in zukünftigen Experimenten. Der erste Teil der Arbeit befasst sich mit Quantenreflexion als neue Signatur des Quantenvakuums, welche nur in manifest inhomogenen Feldern auftritt. Es findet eine tiefgehende Untersuchung verschiedener Konfigurationen und Inhomogeneitäten im experimentell relevanten Limes schwacher Felder, und desweiteren im Limes starker Hintergrundfelder statt. Für typische Parameter von modernen Hochintensitätslasern schätzen wir die zu erwartende Anzahl von quantenreflektierten Photonen ab. Der zweite Teil der Arbeit beschäftigt sich mit Photonen-Splitting und -Merging in inhomogenen Hintergrundfeldern. Neben einer Analyse der Auswahlregeln für diese beiden Prozesse untersuchen wir einige mögliche experimentelle Anordnungen mit Hochintensitätslasern zum Zwecke des Nachweises von Photonen-Merging im Vakuum. Die Emission des Signals in den feldfreien Raum kombiniert mit der einhergehenden Frequenzkonversion sowie induziertem Polarisationswechsel machen Merging zu einem vielversprechenden Kandidaten zum experimentellen Nachweis und Untersuchung der nichtlinearen Eigenschaften de
Quantum reflection of photons off spatio-temporal electromagnetic field inhomogeneities
We reconsider the recently proposed nonlinear QED effect of quantum
reflection of photons off an inhomogeneous strong-field region. We present new
results for strong fields varying both in space and time. While such
configurations can give rise to new effects such as frequency mixing, estimated
reflection rates based on previous one-dimensional studies are corroborated. On
a conceptual level, we critically re-examine the validity regime of the
conventional locally-constant-field approximation and identify kinematic
configurations which can be treated reliably. Our results further underline the
discovery potential of quantum reflection as a new signature of the
nonlinearity of the quantum vacuum.Comment: 19 pages, 7 figure
Photon-photon scattering at the high-intensity frontier
The tremendous progress in high-intensity laser technology and the establishment of dedicated high-field laboratories in recent years have paved the way towards a first observation of quantum vacuum nonlinearities at the high-intensity frontier. We advocate a particularly prospective scenario, where three synchronized high-intensity laser pulses are brought into collision, giving rise to signal photons, whose frequency and propagation direction differ from the driving laser pulses, thus providing various means to achieve an excellent signal to background separation. Based on the theoretical concept of vacuum emission, we employ an efficient numerical algorithm which allows us to model the collision of focused high-intensity laser pulses in unprecedented detail. We provide accurate predictions for the numbers of signal photons accessible in experiment. Our study is the first to predict the precise angular spread of the signal photons, and paves the way for a first verification of quantum vacuum nonlinearity in a well-controlled laboratory experiment at one of the many high-intensity laser facilities currently coming online