3 research outputs found

    Hidden vector dark matter

    Full text link
    We show that dark matter could be made of massive gauge bosons whose stability doesn't require to impose by hand any discrete or global symmetry. Stability of gauge bosons can be guaranteed by the custodial symmetry associated to the gauge symmetry and particle content of the model. The particle content we consider to this end is based on a hidden sector made of a vector multiplet associated to a non-abelian gauge group and of a scalar multiplet charged under this gauge group. The hidden sector interacts with the Standard Model particles through the Higgs portal quartic scalar interaction in such a way that the gauge bosons behave as thermal WIMPS. This can lead easily to the observed dark matter relic density in agreement with the other various constraints, and can be tested experimentally in a large fraction of the parameter space. In this model the dark matter direct detection rate and the annihilation cross section can decouple if the Higgs portal interaction is weak.Comment: 13 pages, 7 figures, JHEP published version (2009) + update of section 7 (reference to arXiv:0912.4496

    The Minimal Phantom Sector of the Standard Model: Higgs Phenomenology and Dirac Leptogenesis

    Get PDF
    We propose the minimal, lepton-number conserving, SU(3)xSU(2)xU(1) gauge-singlet, or phantom, extension of the Standard Model. The extension is natural in the sense that all couplings are of O(1) or forbidden due to a phantom sector global U(1)_D symmetry, and basically imitates the standard Majorana see-saw mechanism. Spontaneous breaking of the U(1)_D symmetry triggers consistent electroweak gauge symmetry breaking only if it occurs at a scale compatible with small Dirac neutrino masses and baryogenesis through Dirac leptogenesis. Dirac leptogenesis proceeds through the usual out-of-equilibrium decay scenario, leading to left and right-handed neutrino asymmetries that do not fully equilibrate after they are produced. The model contains two physical Higgs bosons and a massless Goldstone boson. The existence of the Goldstone boson suppresses the Higgs to bb branching ratio and instead the Higgs bosons will mainly decay to invisible Goldstone and/or to visible vector boson pairs. In a representative scenario, we estimate that with 30 fb^-1 integrated luminosity, the LHC could discover this invisibly decaying Higgs, with mass ~120 GeV. At the same time a significantly heavier, partner Higgs boson with mass ~210 GeV could be found through its vector boson decays. Electroweak constraints as well as astrophysical and cosmological implications are analysed and discussed.Comment: 21 pages, 4 figures. Corrected typos and added references. To appear in JHE
    corecore