352 research outputs found
Input parameters selection for soil moisture retrieval using an artificial neural network
Factors other than soil moisture which influence the intensity of microwave emission from the soil include surface temperature, surface roughness, vegetation cover and soil texture which make this a non-linear and ill-posed problem. Artificial Neural Networks (ANNs) have been demonstrated to be good solutions to this type of problem. Since an ANN is a data driven model, proper input selection is a crucial step in its implementation as the presence of redundant or unnecessary inputs can severely impair the ability of the network to learn the target patterns. In this paper, the input parameters are chosen in combination with the brightness temperatures and are based on the use of incremental contributions of the variables towards soil moisture retrieval. Field experiment data obtained during the National Airborne Field Experiment 2005 (NAFE'05) are used. The retrieval accuracy with the input parameters selected is compared with the use of only brightness temperature as input and the use of brightness temperature in conjunction with a range of available parameters. Note that this research does not aim at selecting the best features for all ANN soil moisture retrieval problems using passive microwave. The paper shows that, depending on the problem and the nature of the data, some of the data available are redundant as the input of ANN for soil moisture retrieval. Importantly the results show that with the appropriate choice of inputs, the soil moisture retrieval accuracy of ANN can be significantly improved
Use of Soil Moisture Variability in Artificial Neural Network Retrieval of Soil Moisture
Passive microwave remote sensing is one of the most promising techniques for soil moisture retrieval. However, the inversion of soil moisture from brightness temperature observations is not straightforward, as it is influenced by numerous factors such as surface roughness, vegetation cover, and soil texture. Moreover, the relationship between brightness temperature, soil moisture and the factors mentioned above is highly non-linear and ill-posed. Consequently, Artificial Neural Networks (ANNs) have been used to retrieve soil moisture from microwave data, but with limited success when dealing with data different to that from the training period. In this study, an ANN is tested for its ability to predict soil moisture at 1 km resolution on different dates following training at the same site for a specific date. A novel approach that utilizes information on the variability of soil moisture, in terms of its mean and standard deviation for a (sub) region of spatial dimension up to 40 km, is used to improve the current retrieval accuracy of the ANN method.A comparison between the ANN with and without the use of the variability information showed that this enhancement enables the ANN to achieve an average Root Mean Square Error (RMSE) of around 5.1% v/v when using the variability information, as compared to around 7.5% v/v without it. The accuracy of the soil moisture retrieval was further improved by the division of the target site into smaller regions down to 4 km in size, with the spatial variability of soil moisture calculated from within the smaller region used in the ANN. With the combination of an ANN architecture of a single hidden layer of 20 neurons and the dual-polarized brightness temperatures as input, the proposed use of variability and sub-region methodology achieves an average retrieval accuracy of 3.7% v/v. Although this accuracy is not the lowest as comparing to the research in this field, the main contribution is the ability of ANN in solving the problem of predicting “out-of-range” soil moisture values. However, the applicability of this method is highly dependent on the accuracy of the mean and standard deviation values within the sub-region, potentially limiting its routine application
Farming and the geography of nutrient production for human use: a transdisciplinary analysis
Background: Information about the global structure of agriculture and nutrient production and its diversity is essential to improve present understanding of national food production patterns, agricultural livelihoods, and food chains, and their linkages to land use and their associated ecosystems services. Here we provide a plausible breakdown of global agricultural and nutrient production by farm size, and also study the associations between farm size, agricultural diversity, and nutrient production. This analysis is crucial to design interventions that might be appropriately targeted to promote healthy diets and ecosystems in the face of population growth, urbanisation, and climate change.
Methods: We used existing spatially-explicit global datasets to estimate the production levels of 41 major crops, seven livestock, and 14 aquaculture and fish products. From overall production estimates, we estimated the production of vitamin A, vitamin B₁₂, folate, iron, zinc, calcium, calories, and protein. We also estimated the relative contribution of farms of different sizes to the production of different agricultural commodities and associated nutrients, as well as how the diversity of food production based on the number of different products grown per geographic pixel and distribution of products within this pixel (Shannon diversity index [H]) changes with different farm sizes.
Findings: Globally, small and medium farms (≤50 ha) produce 51–77% of nearly all commodities and nutrients examined here. However, important regional differences exist. Large farms (>50 ha) dominate production in North America, South America, and Australia and New Zealand. In these regions, large farms contribute between 75% and 100% of all cereal, livestock, and fruit production, and the pattern is similar for other commodity groups. By contrast, small farms (≤20 ha) produce more than 75% of most food commodities in sub-Saharan Africa, southeast Asia, south Asia, and China. In Europe, west Asia and north Africa, and central America, medium-size farms (20–50 ha) also contribute substantially to the production of most food commodities. Very small farms (≤2 ha) are important and have local significance in sub-Saharan Africa, southeast Asia, and south Asia, where they contribute to about 30% of most food commodities. The majority of vegetables (81%), roots and tubers (72%), pulses (67%), fruits (66%), fish and livestock products (60%), and cereals (56%) are produced in diverse landscapes (H>1·5). Similarly, the majority of global micronutrients (53–81%) and protein (57%) are also produced in more diverse agricultural landscapes (H>1·5). By contrast, the majority of sugar (73%) and oil crops (57%) are produced in less diverse ones (H≤1·5), which also account for the majority of global calorie production (56%). The diversity of agricultural and nutrient production diminishes as farm size increases. However, areas of the world with higher agricultural diversity produce more nutrients, irrespective of farm size.
Interpretation: Our results show that farm size and diversity of agricultural production vary substantially across regions and are key structural determinants of food and nutrient production that need to be considered in plans to meet social, economic, and environmental targets. At the global level, both small and large farms have key roles in food and nutrition security. Efforts to maintain production diversity as farm sizes increase seem to be necessary to maintain the production of diverse nutrients and viable, multifunctional, sustainable landscapes.
Funding: Commonwealth Scientific and Industrial Research Organisation, Bill & Melinda Gates Foundation, CGIAR Research Programs on Climate Change, Agriculture and Food Security and on Agriculture for Nutrition and Health funded by the CGIAR Fund Council, Daniel and Nina Carasso Foundation, European Union, International Fund for Agricultural Development, Australian Research Council, National Science Foundation, Gordon and Betty Moore Foundation, and Joint Programming Initiative on Agriculture, Food Security and Climate Change—Belmont Forum
- …