39 research outputs found
High-brightness switchable multi-wavelength remote laser in air
Remote laser in air based on amplified spontaneous emission (ASE) has
produced rather well-collimated coherent beams in both backward and forward
propagation directions, opening up possibilities for new remote sensing
approaches. The remote ASE-based lasers were shown to enable operation either
at ~391 and 337 nm using molecular nitrogen or at ~845 nm using molecular
oxygen as gain medium, depending on the employed pump lasers. To date, a
multi-wavelength laser in air that allows for dynamically switching the
operating wavelength has not yet been achieved, although this type of laser is
certainly of high importance for detecting multiple hazard gases. In this
Letter, we demonstrate, for the first time to our knowledge, a harmonic-seeded
switchable multi-wavelength laser in air driven by intense mid-infrared
femtosecond laser pulses. Furthermore, population inversion in the
multi-wavelength remote laser occurs at an ultrafast time-scale (i.e., less
than ~200 fs) owing to direct formation of excited molecular nitrogen ions by
strong-field ionization of inner-valence electrons, which is fundamentally
different from the previously reported pumping mechanisms based either on
electron recombination of ionized molecular nitrogen or on resonant two-photon
excitation of atomic oxygen fragments resulting from resonant two-photon
dissociation of molecular oxygen. The bright multi-wavelength laser in air
opens the perspective for remote detection of multiple pollutants based on
nonlinear spectroscopy.Comment: 18 pages, 5 figure
Remote creation of strong and coherent emissions in air with two-color ultrafast laser pulses
We experimentally demonstrate generation of strong narrow-bandwidth emissions
with excellent coherent properties at ~391 nm and ~428 nm from molecular ions
of nitrogen inside a femtosecond filament in air by an orthogonally polarized
two-color driver field (i. e., 800 nm laser pulse and its second harmonic). The
durations of the coherent emissions at 391 nm and 428 nm are measured to be
~2.4 ps and ~7.8 ps respectively, both of which are much longer than the
duration of the pump and its second harmonic pulses. Furthermore, the measured
temporal decay characteristics of the excited molecular systems suggest an
"instantaneous" population inversion mechanism that may be achieved in
molecular nitrogen ions at an ultrafast time scale comparable to the 800 nm
pump pulse.Comment: 19 pages, 4 figure
Harmonic-seeded remote laser emissions in N2-Ar, N2-Xe and N2-Ne mixtures: a comparative study
We report on the investigation on harmonic-seeded remote laser emissions at
391 nm wavelength from strong-field ionized nitrogen molecules in three
different gas mixtures, i.e., N2-Ar, N2-Xe and N2-Ne. We observed a decrease in
the remote laser intensity in the N2-Xe mixture because of the decreased
clamped intensity in the filament; whereas in the N2-Ne mixture, the remote
laser intensity slightly increases because of the increased clamped intensity
within the filament. Remarkably, although the clamped intensity in the filament
remains nearly unchanged in the N2-Ar mixture because of the similar ionization
potentials of N2 and Ar, a significant enhancement of the lasing emission is
realized in the N2-Ar mixture. The enhancement is attributed to the stronger
third harmonic seed, and longer gain medium due to the extended filament.Comment: 10 pages, 5 figure
Femtosecond Laser Filamentation for Atmospheric Sensing
Powerful femtosecond laser pulses propagating in transparent materials result in the formation of self-guided structures called filaments. Such filamentation in air can be controlled to occur at a distance as far as a few kilometers, making it ideally suited for remote sensing of pollutants in the atmosphere. On the one hand, the high intensity inside the filaments can induce the fragmentation of all matters in the path of filaments, resulting in the emission of characteristic fluorescence spectra (fingerprints) from the excited fragments, which can be used for the identification of various substances including chemical and biological species. On the other hand, along with the femtosecond laser filamentation, white-light supercontinuum emission in the infrared to UV range is generated, which can be used as an ideal light source for absorption Lidar. In this paper, we present an overview of recent progress concerning remote sensing of the atmosphere using femtosecond laser filamentation
Femtosecond Laser Filamentation
Femtosecond Laser Filamentation gives a comprehensive review of the physics of propagation of intense femtosecond laser pulses in optical media (principally air) and the applications and challenges of this new technique. This book presents the modern understanding of the physics of femtosecond laser pulse propagation, including unusual new effects such as the self-transformation of the pulse into a white light laser pulse, intensity clamping, the physics of multiple filamentation and competition, and how filaments’ ability to melt glass leads to wave guide writing. The potential applications of laser filamentation in atmospheric sensing and the generation of other electromagnetic pulses from the UV to the radio frequency are treated, together with possible future challenges in the excitation of super-excited states of molecules. Exciting new phenomena such as filament induced ultrafast birefringence and the excitation of molecular rotational wave packets and their multiple revivals in air (gases) will also be discussed. This volume provides the most comprehensive and up-to-date discussion of these topics currently available. It will be of great interest to scientists and researchers using intense femtosecond laser pulses as well as to graduate students and researchers who wish to learn more about the field