2 research outputs found

    Transmission Resonance in an Infinite Strip of Phason-Defects of a Penrose Approximant Network

    Full text link
    An exact method that analytically provides transfer matrices in finite networks of quasicrystalline approximants of any dimensionality is discussed. We use these matrices in two ways: a) to exactly determine the band structure of an infinite approximant network in analytical form; b) to determine, also analytically, the quantum resistance of a finite strip of a network under appropriate boundary conditions. As a result of a subtle interplay between topology and phase interferences, we find that a strip of phason-defects along a special symmetry direction of a low 2-d Penrose approximant, leads to the rigorous vanishing of the reflection coefficient for certain energies. A similar behavior appears in a low 3-d approximant. This type of ``resonance" is discussed in connection with the gap structure of the corresponding ordered (undefected) system.Comment: 18 pages special macros jnl.tex,reforder.tex, eqnorder.te
    corecore