380 research outputs found

    High-resolution Ce 3d-edge resonant photoemission study of CeNi_2

    Full text link
    Resonant photoemission (RPES) at the Ce 3d -> 4f threshold has been performed for alpha-like compound CeNi_2 with extremely high energy resolution (full width at half maximum < 0.2 eV) to obtain bulk-sensitive 4f spectral weight. The on-resonance spectrum shows a sharp resolution-limited peak near the Fermi energy which can be assigned to the tail of the Kondo resonance. However, the spin-orbit side band around 0.3 eV binding energy corresponding to the f_{7/2} peak is washed out, in contrast to the RPES spectrum at the Ce 3d -> 4f RPES threshold. This is interpreted as due to the different surface sensitivity, and the bulk-sensitive Ce 3d -> 4f RPES spectra are found to be consistent with other electron spectroscopy and low energy properties for alpha-like Ce-transition metal compounds, thus resolves controversy on the interpretation of Ce compound photoemission. The 4f spectral weight over the whole valence band can also be fitted fairly well with the Gunnarsson-Schoenhammer calculation of the single impurity Anderson model, although the detailed features show some dependence on the hybridization band shape and (possibly) Ce 5d emissions.Comment: 4 pages, 3 figur

    Anti-confocal versus confocal assessment of the middle ear simulated by Monte Carlo methods

    Get PDF
    The ability to monitor the inflammatory state of the middle ear mucosa would provide clinical utility. To enable spectral measurements on the mucosa whilst rejecting background signal from the eardrum an anti-confocal system is investigated. In contrast to the central pinhole in a confocal system the anti-confocal system uses a central stop to reject light from the in-focus plane, the eardrum, with all other light detected. Monte Carlo simulations of this system show an increase in detected signal and improved signal-to-background ratio compared to a conventional confocal set-up used to image the middle ear mucosa. System parameters are varied in the simulation and their influence on the level of background rejection are presented

    Tradable Pollution Permits and the Regulatory Game

    Get PDF
    This paper analyzes polluters\u27 incentives to move from a traditional command and control (CAC) environmental regulatory regime to a tradable permits (TPP) regime. Existing work in environmental economics does not model how firms contest and bargain over actual regulatory implementation in CAC regimes, and therefore fail to compare TPP regimes with any CAC regime that is actually observed. This paper models CAC environmental regulation as a bargaining game over pollution entitlements. Using a reduced form model of the regulatory contest, it shows that CAC regulatory bargaining likely generates a regulatory status quo under which firms with the highest compliance costs bargain for the smallest pollution reductions, or even no reduction at all. As for a tradable permits regime, it is shown that all firms are better off under such a regime than they would be under an idealized CAC regime that set and enforced a uniform pollution standard, but permit sellers (low compliance cost firms) may actually be better off under a TPP regime with relaxed aggregate pollution levels. Most importantly, because high cost firms (or facilities) are the most weakly regulated in the equilibrium under negotiated or bargained CAC regimes, they may be net losers in a proposed move to a TPP regime. When equilibrium costs under a TPP regime are compared with equilibrium costs under a status quo CAC regime, several otherwise paradoxical aspects of firm attitudes toward TPP type reforms can be explained. In particular, the otherwise paradoxical pattern of allowances awarded under Phase II of the 1990 Clean Air Act\u27s acid rain program, a pattern tending to favor (in Phase II) cleaner, newer generating units, is explained by the fact that under the status quo regime, a kind of bargained CAC, it was the newer cleaner units that were regulated, and which therefore had higher marginal control costs than did the largely unregulated older, plants. As a normative matter, the analysis here implies that the proper baseline for evaluating TPP regimes such as those contained in the Bush Administration\u27s recent Clear Skies initiative is not idealized, but nonexistent CAC regulatory outcomes, but rather the outcomes that have resulted from the bargaining game set up by CAC laws and regulations

    Adrenal venous sampling for stratifying patients for surgery of adrenal nodules detected using dynamic contrast enhanced CT

    Get PDF
    PURPOSEWe aimed to assess the value of adrenal venous sampling (AVS) for diagnosing primary aldosteronism (PA) subtypes in patients with a unilateral nodule detected on adrenal computed tomography (CT) and scheduled for adrenalectomy. MATERIALS AND METHODSThis retrospective study included 80 consecutive patients with PA undergoing CT and AVS. Different lateralization indices were assessed, and a cutoff established using receiver operating characteristic curve analysis. The value of CT alone versus CT with AVS for differentiating PA subtypes was compared. The adrenalectomy outcome was assessed, and predictors of cure were determined using univariate analysis. RESULTSAVS was successful in 68 patients. A cortisol-corrected aldosterone affected-to-unaffected ratio cutoff of 2.0 and affected-to-inferior vena cava ratio cutoff of 1.4 were the best lateralization indices, with accuracies of 82.5% and 80.4%, respectively. CT and AVS diagnosed 38 patients with aldosterone-producing adenomas, five patients with unilateral adrenal hyperplasia, and 25 patients with bilateral adrenal hyperplasia. Of the 52 patients with a nodule detected on CT, subsequent AVS diagnosed bilateral adrenal hyperplasia in 14 patients (27%). Compared to the results of combining CT with AVS, the accuracy of CT alone for diagnosing aldosterone-producing adenomas was 71.1% (P < 0.001). The cure rate for hypertension after adrenalectomy was 39.2%, with improvement in 53.5% of patients. On univariate analysis, predictors of persistent hypertension were male gender and preoperative systolic blood pressure. CONCLUSIONTo avoid inappropriate surgery, AVS is necessary for diagnosing unilateral nodules with aldosterone hypersecretion detected by CT

    Sulfur infiltrated mesoporous graphene–silica composite as a polysulfide retaining cathode material for lithium–sulfur batteries

    Get PDF
    The lithium–sulfur (Li–S) system is an attractive candidate to replace the current state-of-the-art lithium-ion battery due to the promising theoretical charge capacity of 1675 mA h/g and energy density of 2500 Wh/kg; however, the dissolution of intermediate polysulfides into the organic liquid electrolyte during cycling hinders its practical realization. We report the synthesis of mesoporous graphene–silica composite (m-GS) as a supporting material of sulfur for Li–S batteries. The ordered porous silica structure was synthesized parallel to functionalized graphene sheets (FGSs) through the ternary cooperative assembly of the graphene, silica, and block copolymer precursors. The well-defined, unique mesoporous structure integrates the electronic conductivity of graphene and the dual functions of silica as a structure building block and in situ polysulfide ab-/ad-sorbing agent to give a Li–S battery that has both good retention ability of polysulfides and good rate capability

    A Super-Oxidized Radical Cationic Icosahedral Boron Cluster

    Get PDF
    While the icosahedral closo-[B₁₂H₁₂]²⁻ cluster does not display reversible electrochemical behavior, perfunctionalization of this species via substitution of all 12 B–H vertices with alkoxy or benzyloxy (OR) substituents engenders reversible redox chemistry, providing access to clusters in the dianionic, monoanionic, and neutral forms. Here, we evaluated the electrochemical behavior of the electron-rich B₁₂(O-3-methylbutyl)₁₂ (1) cluster and discovered that a new reversible redox event that gives rise to a fourth electronic state is accessible through one-electron oxidation of the neutral species. Chemical oxidation of 1 with [N(2,4-Br₂C₆H₃)₃]·⁺ afforded the isolable [1]·⁺ cluster, which is the first example of an open-shell cationic B₁₂ cluster in which the unpaired electron is proposed to be delocalized throughout the boron cluster core. The oxidation of 1 is also chemically reversible, where treatment of [1]·⁺ with ferrocene resulted in its reduction back to 1. The identity of [1]·⁺ is supported by EPR, UV–vis, multinuclear NMR (¹H, ¹¹B), and X-ray photoelectron spectroscopic characterization

    A Super-Oxidized Radical Cationic Icosahedral Boron Cluster

    Get PDF
    While the icosahedral closo-[B₁₂H₁₂]²⁻ cluster does not display reversible electrochemical behavior, perfunctionalization of this species via substitution of all 12 B–H vertices with alkoxy or benzyloxy (OR) substituents engenders reversible redox chemistry, providing access to clusters in the dianionic, monoanionic, and neutral forms. Here, we evaluated the electrochemical behavior of the electron-rich B₁₂(O-3-methylbutyl)₁₂ (1) cluster and discovered that a new reversible redox event that gives rise to a fourth electronic state is accessible through one-electron oxidation of the neutral species. Chemical oxidation of 1 with [N(2,4-Br₂C₆H₃)₃]·⁺ afforded the isolable [1]·⁺ cluster, which is the first example of an open-shell cationic B₁₂ cluster in which the unpaired electron is proposed to be delocalized throughout the boron cluster core. The oxidation of 1 is also chemically reversible, where treatment of [1]·⁺ with ferrocene resulted in its reduction back to 1. The identity of [1]·⁺ is supported by EPR, UV–vis, multinuclear NMR (¹H, ¹¹B), and X-ray photoelectron spectroscopic characterization

    Evaluation of persistent-mode operation in a superconducting MgB2 coil in solid nitrogen

    Get PDF
    We report the fabrication of a magnesium diboride (MgB2) coil and evaluate its persistent-mode operation in a system cooled by a cryocooler with solid nitrogen (SN2) as a cooling medium. The main purpose of SN2 was to increase enthalpy of the cold mass. For this work, an in situ processed carbon-doped MgB2 wire was used. The coil was wound on a stainless steel former in a single layer (22 turns), with an inner diameter of 109 mm and height of 20 mm without any insulation. The two ends of the coil were then joined to make a persistent-current switch to obtain the persistent-current mode. After a heat treatment, the whole coil was installed in the SN2 chamber. During operation, the resultant total circuit resistance was estimated to be \u3c7.4x10−14 Ω at 19.5 K±1.5 K, which meets the technical requirement for magnetic resonance imaging application
    corecore