49 research outputs found

    A Super-Oxidized Radical Cationic Icosahedral Boron Cluster

    Get PDF
    While the icosahedral closo-[B₁₂H₁₂]²⁻ cluster does not display reversible electrochemical behavior, perfunctionalization of this species via substitution of all 12 B–H vertices with alkoxy or benzyloxy (OR) substituents engenders reversible redox chemistry, providing access to clusters in the dianionic, monoanionic, and neutral forms. Here, we evaluated the electrochemical behavior of the electron-rich B₁₂(O-3-methylbutyl)₁₂ (1) cluster and discovered that a new reversible redox event that gives rise to a fourth electronic state is accessible through one-electron oxidation of the neutral species. Chemical oxidation of 1 with [N(2,4-Br₂C₆H₃)₃]·⁺ afforded the isolable [1]·⁺ cluster, which is the first example of an open-shell cationic B₁₂ cluster in which the unpaired electron is proposed to be delocalized throughout the boron cluster core. The oxidation of 1 is also chemically reversible, where treatment of [1]·⁺ with ferrocene resulted in its reduction back to 1. The identity of [1]·⁺ is supported by EPR, UV–vis, multinuclear NMR (¹H, ¹¹B), and X-ray photoelectron spectroscopic characterization

    A Super-Oxidized Radical Cationic Icosahedral Boron Cluster

    Get PDF
    While the icosahedral closo-[B₁₂H₁₂]²⁻ cluster does not display reversible electrochemical behavior, perfunctionalization of this species via substitution of all 12 B–H vertices with alkoxy or benzyloxy (OR) substituents engenders reversible redox chemistry, providing access to clusters in the dianionic, monoanionic, and neutral forms. Here, we evaluated the electrochemical behavior of the electron-rich B₁₂(O-3-methylbutyl)₁₂ (1) cluster and discovered that a new reversible redox event that gives rise to a fourth electronic state is accessible through one-electron oxidation of the neutral species. Chemical oxidation of 1 with [N(2,4-Br₂C₆H₃)₃]·⁺ afforded the isolable [1]·⁺ cluster, which is the first example of an open-shell cationic B₁₂ cluster in which the unpaired electron is proposed to be delocalized throughout the boron cluster core. The oxidation of 1 is also chemically reversible, where treatment of [1]·⁺ with ferrocene resulted in its reduction back to 1. The identity of [1]·⁺ is supported by EPR, UV–vis, multinuclear NMR (¹H, ¹¹B), and X-ray photoelectron spectroscopic characterization

    TRIPs art. 7 and 8, FTAs and Trademarks

    No full text
    corecore