4,738 research outputs found

    Lost in Time: Temporal Analytics for Long-Term Video Surveillance

    Full text link
    Video surveillance is a well researched area of study with substantial work done in the aspects of object detection, tracking and behavior analysis. With the abundance of video data captured over a long period of time, we can understand patterns in human behavior and scene dynamics through data-driven temporal analytics. In this work, we propose two schemes to perform descriptive and predictive analytics on long-term video surveillance data. We generate heatmap and footmap visualizations to describe spatially pooled trajectory patterns with respect to time and location. We also present two approaches for anomaly prediction at the day-level granularity: a trajectory-based statistical approach, and a time-series based approach. Experimentation with one year data from a single camera demonstrates the ability to uncover interesting insights about the scene and to predict anomalies reasonably well.Comment: To Appear in Springer LNE

    Sparsity in Dynamics of Spontaneous Subtle Emotions: Analysis \& Application

    Full text link
    Spontaneous subtle emotions are expressed through micro-expressions, which are tiny, sudden and short-lived dynamics of facial muscles; thus poses a great challenge for visual recognition. The abrupt but significant dynamics for the recognition task are temporally sparse while the rest, irrelevant dynamics, are temporally redundant. In this work, we analyze and enforce sparsity constrains to learn significant temporal and spectral structures while eliminate irrelevant facial dynamics of micro-expressions, which would ease the challenge in the visual recognition of spontaneous subtle emotions. The hypothesis is confirmed through experimental results of automatic spontaneous subtle emotion recognition with several sparsity levels on CASME II and SMIC, the only two publicly available spontaneous subtle emotion databases. The overall performances of the automatic subtle emotion recognition are boosted when only significant dynamics are preserved from the original sequences.Comment: IEEE Transaction of Affective Computing (2016

    Enriched Long-term Recurrent Convolutional Network for Facial Micro-Expression Recognition

    Full text link
    Facial micro-expression (ME) recognition has posed a huge challenge to researchers for its subtlety in motion and limited databases. Recently, handcrafted techniques have achieved superior performance in micro-expression recognition but at the cost of domain specificity and cumbersome parametric tunings. In this paper, we propose an Enriched Long-term Recurrent Convolutional Network (ELRCN) that first encodes each micro-expression frame into a feature vector through CNN module(s), then predicts the micro-expression by passing the feature vector through a Long Short-term Memory (LSTM) module. The framework contains two different network variants: (1) Channel-wise stacking of input data for spatial enrichment, (2) Feature-wise stacking of features for temporal enrichment. We demonstrate that the proposed approach is able to achieve reasonably good performance, without data augmentation. In addition, we also present ablation studies conducted on the framework and visualizations of what CNN "sees" when predicting the micro-expression classes.Comment: Published in Micro-Expression Grand Challenge 2018, Workshop of 13th IEEE Facial & Gesture 201

    Less is More: Micro-expression Recognition from Video using Apex Frame

    Full text link
    Despite recent interest and advances in facial micro-expression research, there is still plenty room for improvement in terms of micro-expression recognition. Conventional feature extraction approaches for micro-expression video consider either the whole video sequence or a part of it, for representation. However, with the high-speed video capture of micro-expressions (100-200 fps), are all frames necessary to provide a sufficiently meaningful representation? Is the luxury of data a bane to accurate recognition? A novel proposition is presented in this paper, whereby we utilize only two images per video: the apex frame and the onset frame. The apex frame of a video contains the highest intensity of expression changes among all frames, while the onset is the perfect choice of a reference frame with neutral expression. A new feature extractor, Bi-Weighted Oriented Optical Flow (Bi-WOOF) is proposed to encode essential expressiveness of the apex frame. We evaluated the proposed method on five micro-expression databases: CAS(ME)2^2, CASME II, SMIC-HS, SMIC-NIR and SMIC-VIS. Our experiments lend credence to our hypothesis, with our proposed technique achieving a state-of-the-art F1-score recognition performance of 61% and 62% in the high frame rate CASME II and SMIC-HS databases respectively.Comment: 14 pages double-column, author affiliations updated, acknowledgment of grant support adde

    Shallow Triple Stream Three-dimensional CNN (STSTNet) for Micro-expression Recognition

    Full text link
    In the recent year, state-of-the-art for facial micro-expression recognition have been significantly advanced by deep neural networks. The robustness of deep learning has yielded promising performance beyond that of traditional handcrafted approaches. Most works in literature emphasized on increasing the depth of networks and employing highly complex objective functions to learn more features. In this paper, we design a Shallow Triple Stream Three-dimensional CNN (STSTNet) that is computationally light whilst capable of extracting discriminative high level features and details of micro-expressions. The network learns from three optical flow features (i.e., optical strain, horizontal and vertical optical flow fields) computed based on the onset and apex frames of each video. Our experimental results demonstrate the effectiveness of the proposed STSTNet, which obtained an unweighted average recall rate of 0.7605 and unweighted F1-score of 0.7353 on the composite database consisting of 442 samples from the SMIC, CASME II and SAMM databases.Comment: 5 pages, 1 figure, Accepted and published in IEEE FG 201

    Analysis of Material Sample Heated by Impinging Hot Hydrogen Jet in a Non-Nuclear Tester

    Get PDF
    A computational conjugate heat transfer methodology was developed and anchored with data obtained from a hot-hydrogen jet heated, non-nuclear materials tester, as a first step towards developing an efficient and accurate multiphysics, thermo-fluid computational methodology to predict environments for hypothetical solid-core, nuclear thermal engine thrust chamber. The computational methodology is based on a multidimensional, finite-volume, turbulent, chemically reacting, thermally radiating, unstructured-grid, and pressure-based formulation. The multiphysics invoked in this study include hydrogen dissociation kinetics and thermodynamics, turbulent flow, convective and thermal radiative, and conjugate heat transfers. Predicted hot hydrogen jet and material surface temperatures were compared with those of measurement. Predicted solid temperatures were compared with those obtained with a standard heat transfer code. The interrogation of physics revealed that reactions of hydrogen dissociation and recombination are highly correlated with local temperature and are necessary for accurate prediction of the hot-hydrogen jet temperature
    • …
    corecore