120 research outputs found

    The stability of the O(N) invariant fixed point in three dimensions

    Full text link
    We study the stability of the O(N) fixed point in three dimensions under perturbations of the cubic type. We address this problem in the three cases N=2,3,4N=2,3,4 by using finite size scaling techniques and high precision Monte Carlo simulations. It is well know that there is a critical value 2<Nc<42<N_c<4 below which the O(N) fixed point is stable and above which the cubic fixed point becomes the stable one. While we cannot exclude that Nc<3N_c<3, as recently claimed by Kleinert and collaborators, our analysis strongly suggests that NcN_c coincides with 3.Comment: latex file of 18 pages plus three ps figure

    Neutrino masses in the Lepton Number Violating MSSM

    Full text link
    We consider the most general supersymmetric model with minimal particle content and an additional discrete Z_3 symmetry (instead of R-parity), which allows lepton number violating terms and results in non-zero Majorana neutrino masses. We investigate whether the currently measured values for lepton masses and mixing can be reproduced. We set up a framework in which Lagrangian parameters can be initialised without recourse to assumptions concerning trilinear or bilinear superpotential terms, CP-conservation or intergenerational mixing and analyse in detail the one loop corrections to the neutrino masses. We present scenarios in which the experimental data are reproduced and show the effect varying lepton number violating couplings has on the predicted atmospheric and solar mass^2 differences. We find that with bilinear lepton number violating couplings in the superpotential of the order 1 MeV the atmospheric mass scale can be reproduced. Certain trilinear superpotential couplings, usually, of the order of the electron Yukawa coupling can give rise to either atmospheric or solar mass scales and bilinear supersymmetry breaking terms of the order 0.1 GeV^2 can set the solar mass scale. Further details of our calculation, Lagrangian, Feynman rules and relevant generic loop diagrams, are presented in three Appendices.Comment: 48 pages, 7 figures, v2 references added, typos corrected, published versio

    Higgs mediated Double Flavor Violating top decays in Effective Theories

    Full text link
    The possibility of detecting double flavor violating top quark transitions at future colliders is explored in a model-independent manner using the effective Lagrangian approach through the tuiτμt \to u_i\tau \mu (ui=u,cu_i=u,c) decays. A Yukawa sector that contemplates SUL(2)×UY(1)SU_L(2)\times U_Y(1) invariants of up to dimension six is proposed and used to derive the most general flavor violating and CP violating qiqjHq_iq_jH and liljHl_il_jH vertices of renormalizable type. Low-energy data, on high precision measurements, and experimental limits are used to constraint the tuiHtu_iH and HτμH\tau \mu vertices and then used to predict the branching ratios for the tuiτμt \to u_i\tau \mu decays. It is found that this branching ratios may be of the order of 104105 10^{-4}-10^{-5}, for a relative light Higgs boson with mass lower than 2mW2m_W, which could be more important than those typical values found in theories beyond the standard model for the rare top quark decays tuiViVjt\to u_iV_iV_j (Vi=W,Z,γ,gV_i=W,Z,\gamma, g) or tuil+lt\to u_il^+l^-. %% LHC experiments, by using a total integrated luminosity of 3000fb1\rm 3000 fb^{-1} of data, will be able to rule out, at 95% C.L., DFV top quark decays up to a Higgs mass of 155 GeV/c2c^2 or discover such a process up to a Higgs mass of 147 GeV/c2c^2.Comment: 24 pages, 11 figure

    Quantum group symmetry of the Quantum Hall effect on the non-flat surfaces

    Full text link
    After showing that the magnetic translation operators are not the symmetries of the QHE on non-flat surfaces , we show that there exist another set of operators which leads to the quantum group symmetries for some of these surfaces . As a first example we show that the su(2)su(2) symmetry of the QHE on sphere leads to suq(2)su_q(2) algebra in the equator . We explain this result by a contraction of su(2)su(2) . Secondly , with the help of the symmetry operators of QHE on the Pioncare upper half plane , we will show that the ground state wave functions form a representation of the suq(2)su_q(2) algebra .Comment: 8 pages,latex,no figur

    CPT and Other Symmetries in String/M Theory

    Get PDF
    We initiate a search for non-perturbative consistency conditions in M theory. Some non-perturbative conditions are already known in Type I theories; we review these and search for others. We focus principally on possible anomalies in discrete symmetries. It is generally believed that discrete symmetries in string theories are gauge symmetries, so anomalies would provide evidence for inconsistencies. Using the orbifold cosmic string construction, we give some evidence that the symmetries we study are gauged. We then search for anomalies in discrete symmetries in a variety of models, both with and without supersymmetry. In symmetric orbifold models we extend previous searches, and show in a variety of examples that all anomalies may be canceled by a Green-Schwarz mechanism. We explore some asymmetric orbifold constructions and again find that all anomalies may be canceled this way. Then we turn to Type IIB orientifold models where it is known that even perturbative anomalies are non-universal. In the examples we study, by combining geometric discrete symmetries with continuous gauge symmetries, one may define non-anomalous discrete symmetries already in perturbation theory; in other cases, the anomalies are universal. Finally, we turn to the question of CPT conservation in string/M theory. It is well known that CPT is conserved in all string perturbation expansions; here in a number of examples for which a non-perturbative formulation is available we provide evidence that it is conserved exactly.Comment: 52 pages.1 paragraph added in introduction to clarify assumption

    A model realizing the Harrison-Perkins-Scott lepton mixing matrix

    Full text link
    We present a supersymmetric model in which the lepton mixing matrix UU obeys, at the seesaw scale, the Harrison--Perkins--Scott \textit{Ansatz}--vanishing Ue3U_{e3}, maximal atmospheric neutrino mixing, and sin2θ=1/3\sin^2{\theta_\odot} = 1/3 (θ\theta_\odot is the solar mixing angle). The model features a permutation symmetry S3S_3 among the three lepton multiplets of each type--left-handed doublets, right-handed charged leptons, and right-handed neutrinos--and among three Higgs doublets and three zero-hypercharge scalar singlets; a fourth right-handed neutrino, a fourth Higgs doublet, and a fourth scalar singlet are invariant under S3S_3. In addition, the model has seven \mathbbm{Z}_2 symmetries, out of which six do not commute with S3S_3. Supersymmetry is needed in order to eliminate some quartic terms from the scalar potential, quartic terms which would make impossible to obtain the required vacuum expectation values of the three Higgs doublets and three scalar singlets. The Yukawa couplings to the charged leptons are flavour diagonal, so that flavour-changing neutral Yukawa interactions only arise at loop level.Comment: 16 pages, plain LaTeX, no figures; some clarifying remarks in the conclusions and references added, version accepted for publication in JHE

    q-Quaternions and q-deformed su(2) instantons

    Get PDF
    We construct (anti)instanton solutions of a would-be q-deformed su(2) Yang-Mills theory on the quantum Euclidean space R_q^4 [the SO_q(4)-covariant noncommutative space] by reinterpreting the function algebra on the latter as a q-quaternion bialgebra. Since the (anti)selfduality equations are covariant under the quantum group of deformed rotations, translations and scale change, by applying the latter we can generate new solutions from the one centered at the origin and with unit size. We also construct multi-instanton solutions. As they depend on noncommuting parameters playing the roles of `sizes' and `coordinates of the centers' of the instantons, this indicates that the moduli space of a complete theory will be a noncommutative manifold. Similarly, gauge transformations should be allowed to depend on additional noncommutative parameters.Comment: Latex file, 39 pages. Final version appeared in JM

    Ground state cooling in a bad cavity

    Full text link
    We study the mechanical effects of light on an atom trapped in a harmonic potential when an atomic dipole transition is driven by a laser and it is strongly coupled to a mode of an optical resonator. We investigate the cooling dynamics in the bad cavity limit, focussing on the case in which the effective transition linewidth is smaller than the trap frequency, hence when sideband cooling could be implemented. We show that quantum correlations between the mechanical actions of laser and cavity field can lead to an enhancement of the cooling efficiency with respect to sideband cooling. Such interference effects are found when the resonator losses prevail over spontaneous decay and over the rates of the coherent processes characterizing the dynamics.Comment: 6 pages, 5 figures; J. Mod. Opt. (2007

    Characterisations of Classical and Non-classical states of Quantised Radiation

    Full text link
    A new operator based condition for distinguishing classical from non-classical states of quantised radiation is developed. It exploits the fact that the normal ordering rule of correspondence to go from classical to quantum dynamical variables does not in general maintain positivity. It is shown that the approach naturally leads to distinguishing several layers of increasing nonclassicality, with more layers as the number of modes increases. A generalisation of the notion of subpoissonian statistics for two-mode radiation fields is achieved by analysing completely all correlations and fluctuations in quadratic combinations of mode annihilation and creation operators conserving the total photon number. This generalisation is nontrivial and intrinsically two-mode as it goes beyond all possible single mode projections of the two-mode field. The nonclassicality of pair coherent states, squeezed vacuum and squeezed thermal states is analysed and contrasted with one another, comparing the generalised subpoissonian statistics with extant signatures of nonclassical behaviour.Comment: 16 pages, Revtex, One postscript Figure compressed and uuencoded Replaced, minor changes in eq 4.30 and 4.32. no effect on the result

    A tentative Replica Study of the Glass Transition

    Full text link
    We propose a method to study quantitatively the glass transition in a system of interacting particles. In spite of the absence of any quenched disorder, we introduce a replicated version of the hypernetted chain equations. The solution of these equations, for hard or soft spheres, signals a transition to the glass phase. However the predicted value of the energy and specific heat in the glass phase are wrong, calling for an improvement of this method.Comment: 9 pages, four postcript figures attache
    corecore