31 research outputs found

    Mixed Wino Dark Matter: Consequences for Direct, Indirect and Collider Detection

    Full text link
    In supersymmetric models with gravity-mediated SUSY breaking and gaugino mass unification, the predicted relic abundance of neutralinos usually exceeds the strict limits imposed by the WMAP collaboration. One way to obtain the correct relic abundance is to abandon gaugino mass universality and allow a mixed wino-bino lightest SUSY particle (LSP). The enhanced annihilation and scattering cross sections of mixed wino dark matter (MWDM) compared to bino dark matter lead to enhanced rates for direct dark matter detection, as well as for indirect detection at neutrino telescopes and for detection of dark matter annihilation products in the galactic halo. For collider experiments, MWDM leads to a reduced but significant mass gap between the lightest neutralinos so that chi_2^0 two-body decay modes are usually closed. This means that dilepton mass edges-- the starting point for cascade decay reconstruction at the CERN LHC-- should be accessible over almost all of parameter space. Measurement of the m_{\tz_2}-m_{\tz_1} mass gap at LHC plus various sparticle masses and cross sections as a function of beam polarization at the International Linear Collider (ILC) would pinpoint MWDM as the dominant component of dark matter in the universe.Comment: 29 pages including 19 eps figure

    Direct, Indirect and Collider Detection of Neutralino Dark Matter In SUSY Models with Non-universal Higgs Masses

    Full text link
    In supersymmetric models with gravity-mediated SUSY breaking, universality of soft SUSY breaking sfermion masses m_0 is motivated by the need to suppress unwanted flavor changing processes. The same motivation, however, does not apply to soft breaking Higgs masses, which may in general have independent masses from matter scalars at the GUT scale. We explore phenomenological implications of both the one-parameter and two-parameter non-universal Higgs mass models (NUHM1 and NUHM2), and examine the parameter ranges compatible with Omega_CDM h^2, BF(b --> s,gamma) and (g-2)_mu constraints. In contrast to the mSUGRA model, in both NUHM1 and NUHM2 models, the dark matter A-annihilation funnel can be reached at low values of tan(beta), while the higgsino dark matter annihilation regions can be reached for low values of m_0. We show that there may be observable rates for indirect and direct detection of neutralino cold dark matter in phenomenologically aceptable ranges of parameter space. We also examine implications of the NUHM models for the Fermilab Tevatron, the CERN LHC and a Sqrt(s)=0.5-1 TeV e+e- linear collider. Novel possibilities include: very light s-top_R, s-charm_R squark and slepton_L masses as well as light charginos and neutralinos and H, A and H^+/- Higgs bosons.Comment: LaTeX, 48pages, 26 Figures. The version with high resolution Figures is available at http://hep.pa.msu.edu/belyaev/public/projects/nuhm/nuhm.p

    Exploring the BWCA (Bino-Wino Co-Annihilation) Scenario for Neutralino Dark Matter

    Get PDF
    In supersymmetric models with non-universal gaugino masses, it is possible to have opposite-sign SU(2) and U(1) gaugino mass terms. In these models, the gaugino eigenstates experience little mixing so that the lightest SUSY particle remains either pure bino or pure wino. The neutralino relic density can only be brought into accord with the WMAP measured value when bino-wino co-annihilation (BWCA) acts to enhance the dark matter annihilation rate. We map out parameter space regions and mass spectra which are characteristic of the BWCA scenario. Direct and indirect dark matter detection rates are shown to be typically very low. At collider experiments, the BWCA scenario is typified by a small mass gap m_{\tilde Z_2}-m_{\tilde Z_1} ~ 20-80 GeV, so that tree level two body decays of \tilde Z_2 are not allowed. However, in this case the second lightest neutralino has an enhanced loop decay branching fraction to photons. While the photonic neutralino decay signature looks difficult to extract at the Fermilab Tevatron, it should lead to distinctive events at the CERN LHC and at a linear e^+e^- collider.Comment: 44 pages, 21 figure

    Mixed Higgsino Dark Matter from a Reduced SU(3) Gaugino Mass: Consequences for Dark Matter and Collider Searches

    Get PDF
    In gravity-mediated SUSY breaking models with non-universal gaugino masses, lowering the SU(3) gaugino mass |M_3| leads to a reduction in the squark and gluino masses. Lower third generation squark masses, in turn, diminish the effect of a large top quark Yukawa coupling in the running of the higgs mass parameter m_{H_u}^2, leading to a reduction in the magnitude of the superpotential mu parameter (relative to M_1 and M_2). A low | mu | parameter gives rise to mixed higgsino dark matter (MHDM), which can efficiently annihilate in the early universe to give a dark matter relic density in accord with WMAP measurements. We explore the phenomenology of the low |M_3| scenario, and find for the case of MHDM increased rates for direct and indirect detection of neutralino dark matter relative to the mSUGRA model. The sparticle mass spectrum is characterized by relatively light gluinos, frequently with m(gl)<<m(sq). If scalar masses are large, then gluinos can be very light, with gl->Z_i+g loop decays dominating the gluino branching fraction. Top squarks can be much lighter than sbottom and first/second generation squarks. The presence of low mass higgsino-like charginos and neutralinos is expected at the CERN LHC. The small m(Z2)-m(Z1) mass gap should give rise to a visible opposite-sign/same flavor dilepton mass edge. At a TeV scale linear e^+e^- collider, the region of MHDM will mean that the entire spectrum of charginos and neutralinos are amongst the lightest sparticles, and are most likely to be produced at observable rates, allowing for a complete reconstruction of the gaugino-higgsino sector.Comment: 35 pages, including 26 EPS figure

    Use of anticoagulants and antiplatelet agents in stable outpatients with coronary artery disease and atrial fibrillation. International CLARIFY registry

    Get PDF
    corecore