255 research outputs found

    Search for Intermediate Mass Black Hole Binaries in the First and Second Observing Runs of the Advanced LIGO and Virgo Network

    Get PDF
    Gravitational-wave astronomy has been firmly established with the detection of gravitational waves from the merger of ten stellar-mass binary black holes and a neutron star binary. This paper reports on the all-sky search for gravitational waves from intermediate mass black hole binaries in the first and second observing runs of the Advanced LIGO and Virgo network. The search uses three independent algorithms: two based on matched filtering of the data with waveform templates of gravitational-wave signals from compact binaries, and a third, model-independent algorithm that employs no signal model for the incoming signal. No intermediate mass black hole binary event is detected in this search. Consequently, we place upper limits on the merger rate density for a family of intermediate mass black hole binaries. In particular, we choose sources with total masses M = m1 + m2 ∈ [120,800] M⊙ and mass ratios q = m2/m1 ∈ [0.1,1.0]. For the first time, this calculation is done using numerical relativity waveforms (which include higher modes) as models of the real emitted signal. We place a most stringent upper limit of 0.20 Gpc-3 yr-1 (in comoving units at the 90% confidence level) for equal-mass binaries with individual masses m1,2 = 100 M⊙ and dimensionless spins X1,2 = 0.8 aligned with the orbital angular momentum of the binary. This improves by a factor of ~5 that reported after Advanced LIGO\u27s first observing run

    Constraining the P-Mode-G-Mode Tidal Instability with GW170817

    Get PDF
    We analyze the impact of a proposed tidal instability coupling p modes and g modes within neutron stars on GW170817. This nonresonant instability transfers energy from the orbit of the binary to internal modes of the stars, accelerating the gravitational-wave driven inspiral. We model the impact of this instability on the phasing of the gravitational wave signal using three parameters per star: An overall amplitude, a saturation frequency, and a spectral index. Incorporating these additional parameters, we compute the Bayes factor (ln Bpg!pg) comparing our p-g model to a standard one. We find that the observed signal is consistent with waveform models that neglect p-g effects, with ln Bpg!pg = 0.03+0.70-0.58 (maximum a posteriori and 90% credible region). By injecting simulated signals that do not include p-g effects and recovering them with the p-g model, we show that there is a ≃ 50% probability of obtaining similar ln Bpg!pg even when p-g effects are absent. We find that the p-g amplitude for 1.4 M⊙ neutron stars is constrained to less than a few tenths of the theoretical maximum, with maxima a posteriori near one-Tenth this maximum and p-g saturation frequency ∼70 Hz. This suggests that there are less than a few hundred excited modes, assuming they all saturate by wave breaking. For comparison, theoretical upper bounds suggest a ≲ 103 modes saturate by wave breaking. Thus, the measured constraints only rule out extreme values of the p-g parameters. They also imply that the instability dissipates a ≲ 1051 erg over the entire inspiral, i.e., less than a few percent of the energy radiated as gravitational waves

    Tests of General Relativity with the Binary Black Hole Signals from the LIGO-Virgo Catalog GWTC-1

    Get PDF
    The detection of gravitational waves by Advanced LIGO and Advanced Virgo provides an opportunity to test general relativity in a regime that is inaccessible to traditional astronomical observations and laboratory tests. We present four tests of the consistency of the data with binary black hole gravitational waveforms predicted by general relativity. One test subtracts the best-fit waveform from the data and checks the consistency of the residual with detector noise. The second test checks the consistency of the low- and high-frequency parts of the observed signals. The third test checks that phenomenological deviations introduced in the waveform model (including in the post-Newtonian coefficients) are consistent with 0. The fourth test constrains modifications to the propagation of gravitational waves due to a modified dispersion relation, including that from a massive graviton. We present results both for individual events and also results obtained by combining together particularly strong events from the first and second observing runs of Advanced LIGO and Advanced Virgo, as collected in the catalog GWTC-1. We do not find any inconsistency of the data with the predictions of general relativity and improve our previously presented combined constraints by factors of 1.1 to 2.5. In particular, we bound the mass of the graviton to be mg ≤ 4.7 x 10-23 eV/c2 (90% credible level), an improvement of a factor of 1.6 over our previously presented results. Additionally, we check that the four gravitational-wave events published for the first time in GWTC-1 do not lead to stronger constraints on alternative polarizations than those published previously

    Directional Limits on Persistent Gravitational Waves using Data from Advanced LIGO\u27s First Two Observing Runs

    Get PDF
    We perform an unmodeled search for persistent, directional gravitational wave (GW) sources using data from the first and second observing runs of Advanced LIGO. We do not find evidence for any GW signals. We place limits on the broadband GW flux emitted at 25 Hz from point sources with a power law spectrum at Fα,Θ \u3c (0.05-25) x 10−8 erg cm−2 s−1 Hz−1 and the (normalized) energy density spectrum in GWs at 25 Hz from extended sources at Ωα(Θ) \u3c (0.19-2.89) x 10−8 sr−1 where α is the spectral index of the energy density spectrum. These represent improvements of 2.5-3x over previous limits. We also consider point sources emitting GWs at a single frequency, targeting the directions of Sco X-1, SN 1987A, and the Galactic center. The best upper limits on the strain amplitude of a potential source in these three directions range from h0 \u3c (3.6-4.7) x 10−25, 1.5x better than previous limits set with the same analysis method.We also report on a marginally significant outlier at 36.06 Hz. This outlier is not consistent with a persistent gravitational-wave source as its significance diminishes when combining all of the available data

    Search for Gravitational Waves from Scorpius X-1 in the Second Advanced LIGO Observing Run with an Improved Hidden Markov Model

    Get PDF
    We present results from a semicoherent search for continuous gravitational waves from the low-mass x-ray binary Scorpius X-1, using a hidden Markov model (HMM) to track spin wandering. This search improves on previous HMM-based searches of LIGO data by using an improved frequency domain matched filter, the J-statistic, and by analyzing data from Advanced LIGO\u27s second observing run. In the frequency range searched, from 60 to 650 Hz, we find no evidence of gravitational radiation. At 194.6 Hz, the most sensitive search frequency, we report an upper limit on gravitational wave strain (at 95% confidence) of h095% = 3.47 x 10-25 when marginalizing over source inclination angle. This is the most sensitive search for Scorpius X-1, to date, that is specifically designed to be robust in the presence of spin wandering

    All-Sky Search for Long-Duration Gravitational-Wave Transients in the Second Advanced LIGO Observing Run

    Get PDF
    We present the results of a search for long-duration gravitational-wave transients in the data from the Advanced LIGO second observation run; we search for gravitational-wave transients of 2-500 s duration in the 24-2048 Hz frequency band with minimal assumptions about signal properties such as waveform morphologies, polarization, sky location or time of occurrence. Signal families covered by these search algorithms include fallback accretion onto neutron stars, broadband chirps from innermost stable circular orbit waves around rotating black holes, eccentric inspiral-merger-ringdown compact binary coalescence waveforms, and other models. The second observation run totals about 118.3 days of coincident data between November 2016 and August 2017. We find no significant events within the parameter space that we searched, apart from the already-reported binary neutron star merger GW170817. We thus report sensitivity limits on the root-sum-square strain amplitude hrss at 50% efficiency. These sensitivity estimates are an improvement relative to the first observing run and also done with an enlarged set of gravitational-wave transient waveforms. Overall, the best search sensitivity is h50%rss = 2.7 x 10-22 Hz-1/2 for a millisecond magnetar model. For eccentric compact binary coalescence signals, the search sensitivity reaches h50%rss = 9.6 x 10-22 Hz-1/2

    Searches for Gravitational Waves from Known Pulsars at Two Harmonics in 2015-2017 LIGO Data

    Get PDF
    We present a search for gravitational waves from 221 pulsars with rotation frequencies ≳ 10 Hz. We use advanced LIGO data from its first and second observing runs spanning 2015-2017, which provides the highest-sensitivity gravitational-wave data so far obtained. In this search we target emission from both the l = m = 2 mass quadrupole mode, with a frequency at twice that of the pulsar\u27s rotation, and the l = 2, m = 1 mode, with a frequency at the pulsar rotation frequency. The search finds no evidence for gravitational-wave emission from any pulsar at either frequency. For the l = m = 2 mode search, we provide updated upper limits on the gravitational-wave amplitude, mass quadrupole moment, and fiducial ellipticity for 167 pulsars, and the first such limits for a further 55. For 20 young pulsars these results give limits that are below those inferred from the pulsars\u27 spin-down. For the Crab and Vela pulsars our results constrain gravitational-wave emission to account for less than 0.017% and 0.18% of the spin-down luminosity, respectively. For the recycled millisecond pulsar J0711-6830 our limits are only a factor of 1.3 above the spin-down limit, assuming the canonical value of 1038 kg m2 for the star\u27s moment of inertia, and imply a gravitational-wave-derived upper limit on the star\u27s ellipticity of 1.2 x 10-8. We also place new limits on the emission amplitude at the rotation frequency of the pulsars

    Search for Eccentric Binary Black Hole Mergers with Advanced LIGO and Advanced Virgo during their First and Second Observing Runs

    Get PDF
    When formed through dynamical interactions, stellar-mass binary black holes (BBHs) may retain eccentric orbits (e \u3e 0.1 at 10 Hz) detectable by ground-based gravitational-wave detectors. Eccentricity can therefore be used to differentiate dynamically formed binaries from isolated BBH mergers. Current template-based gravitational-wave searches do not use waveform models associated with eccentric orbits, rendering the search less efficient for eccentric binary systems. Here we present the results of a search for BBH mergers that inspiral in eccentric orbits using data from the first and second observing runs (O1 and O2) of Advanced LIGO and Advanced Virgo. We carried out the search with the coherent WaveBurst algorithm, which uses minimal assumptions on the signal morphology and does not rely on binary waveform templates. We show that it is sensitive to binary mergers with a detection range that is weakly dependent on eccentricity for all bound systems. Our search did not identify any new binary merger candidates. We interpret these results in light of eccentric binary formation models. We rule out formation channels with rates ≳ 100 Gpc-3 yr-1 for e \u3e 0.1, assuming a black hole mass spectrum with a power-law index ≲2

    Low-Latency Gravitational-Wave Alerts for Multimessenger Astronomy during the Second Advanced LIGO and Virgo Observing Run

    Get PDF
    Advanced LIGO\u27s second observing run (O2), conducted from 2016 November 30 to 2017 August 25, combined with Advanced Virgo\u27s first observations in 2017 August, witnessed the birth of gravitational-wave multimessenger astronomy. The first ever gravitational-wave detection from the coalescence of two neutron stars, GW170817, and its gamma-ray counterpart, GRB 170817A, led to an electromagnetic follow-up of the event at an unprecedented scale. Several teams from across the world searched for EM/neutrino counterparts to GW170817, paving the way for the discovery of optical, X-ray, and radio counterparts. In this article, we describe the online identification of gravitational-wave transients and the distribution of gravitational-wave alerts by the LIGO and Virgo collaborations during O2. We also describe the gravitational-wave observables that were sent in the alerts to enable searches for their counterparts. Finally, we give an overview of the online candidate alerts shared with observing partners during O2. Alerts were issued for 14 candidates, 6 of which have been confirmed as gravitational-wave events associated with the merger of black holes or neutron stars. Of the 14 alerts, 8 were issued less than an hour after data acquisition

    Tests of General Relativity with GW170817

    Get PDF
    The recent discovery by Advanced LIGO and Advanced Virgo of a gravitational wave signal from a binary neutron star inspiral has enabled tests of general relativity (GR) with this new type of source. This source, for the first time, permits tests of strong-field dynamics of compact binaries in the presence of matter. In this Letter, we place constraints on the dipole radiation and possible deviations from GR in the post-Newtonian coefficients that govern the inspiral regime. Bounds on modified dispersion of gravitational waves are obtained; in combination with information from the observed electromagnetic counterpart we can also constrain effects due to large extra dimensions. Finally, the polarization content of the gravitational wave signal is studied. The results of all tests performed here show good agreement with GR
    • …
    corecore