2,380 research outputs found
Discrete Self-Similarity in Type-II Strong Explosions
We present new solutions to the strong explosion problem in a non-power law
density profile. The unperturbed self-similar solutions discovered by Waxman &
Shvarts describe strong Newtonian shocks propagating into a cold gas with a
density profile falling off as , where (Type-II
solutions). The perturbations we consider are spherically symmetric and
log-periodic with respect to the radius. While the unperturbed solutions are
continuously self-similar, the log-periodicity of the density perturbations
leads to a discrete self-similarity of the perturbations, i.e. the solution
repeats itself up to a scaling at discrete time intervals. We discuss these
solutions and verify them against numerical integrations of the time dependent
hydrodynamic equations. Finally we show that this method can be generalized to
treat any small, spherically symmetric density perturbation by employing
Fourier decomposition
Superlinear Increase of Photocurrent due to Stimulated Scattering into a Polariton Condensate
We show that when a monopolar current is passed through an n-i-n structure,
superlinear photocurrent response occurs when there is a polariton condensate.
This is in sharp contrast to the previously observed behavior for a standard
semiconductor laser. Theoretical modeling shows that this is due to a
stimulated exciton-exciton scattering process in which one exciton relaxes into
the condensate, while another one dissociates into an electron-hole pair.Comment: 17 pages with 10 figure
The Non-Relativistic Evolution of GRBs 980703 and 970508: Beaming-Independent Calorimetry
We use the Sedov-Taylor self-similar solution to model the radio emission
from the gamma-ray bursts (GRBs) 980703 and 970508, when the blastwave has
decelerated to non-relativistic velocities. This approach allows us to infer
the energy independent of jet collimation. We find that for GRB 980703 the
kinetic energy at the time of the transition to non-relativistic evolution,
t_NR ~ 40 d, is E_ST ~ (1-6)e51 erg. For GRB 970508 we find E_ST ~ 3e51 erg at
t_NR ~ 100 d, nearly an order of magnitude higher than the energy derived in
Frail, Waxman and Kulkarni (2000). This is due primarily to revised
cosmological parameters and partly to the maximum likelihood fit we use here.
Taking into account radiative losses prior to t_NR, the inferred energies agree
well with those derived from the early, relativistic evolution of the
afterglow. Thus, the analysis presented here provides a robust,
geometry-independent confirmation that the energy scale of cosmological GRBs is
about 5e51 erg, and additionally shows that the central engine in these two
bursts did not produce a significant amount of energy in mildly relativistic
ejecta at late time. Furthermore, a comparison to the prompt energy release
reveals a wide dispersion in the gamma-ray efficiency, strengthening our
growing understanding that E_gamma is a not a reliable proxy for the total
energy.Comment: Submitted to ApJ; 13 pages, 6 figures, 1 table; high-resolution
figures can be found at: http://www.astro.caltech.edu/~ejb/NR
Universal scaling dynamics in a perturbed granular gas
We study the response of a granular system at rest to an instantaneous input
of energy in a localised region. We present scaling arguments that show that,
in dimensions, the radius of the resulting disturbance increases with time
as , and the energy decreases as , where the
exponent is independent of the coefficient of restitution. We
support our arguments with an exact calculation in one dimension and event
driven molecular dynamic simulations of hard sphere particles in two and three
dimensions.Comment: 5 pages, 5 figure
An all-optical event horizon in an optical analogue of a Laval nozzle
Exploiting the fact that light propagation in defocusing nonlinear media can
mimic the transonic flow of an equivalent fluid, we demonstrate experimentally
the formation of an all-optical event horizon in a waveguide structure akin to
a hydrodynamic Laval nozzle. The analogue event horizon, which forms at the
nozzle throat is suggested as a novel platform for analogous gravity
experiments
Low-Mass Star Formation, Triggered by Supernova in Primordial Clouds
The evolution of a gas shell, swept by the supernova remnant of a massive
first generation star, is studied with H_2 and HD chemistry taken into account.
When a first-generation star explodes as a supernova, H_2 and HD molecules are
formed in the swept gas shell and effectively cool the gas shell to
temperatures of 32 K - 154 K. If the supernova remnant can sweep to gather the
ambient gas, the gas shell comes to be dominated by its self-gravity, and
hence, is expected to fragment. Our result shows that for a reasonable range of
temperatures (200 K - 1000 K) of interstellar gas, the formation of
second-generation stars can be triggered by a single supernova or hypernova.Comment: 38pages, 10 figures, The Astrophysical Journal, accepted 8 Dec. 200
Relativistic expansion of a magnetized fluid
We study semi-analytical time-dependent solutions of the relativistic
magnetohydrodynamic (MHD) equations for the fields and the fluid emerging from
a spherical source. We assume uniform expansion of the field and the fluid and
a polytropic relation between the density and the pressure of the fluid. The
expansion velocity is small near the base but approaches the speed of light at
the light sphere where the flux terminates. We find self-consistent solutions
for the density and the magnetic flux. The details of the solution depend on
the ratio of the toroidal and the poloidal magnetic field, the ratio of the
energy carried by the fluid and the electromagnetic field and the maximum
velocity it reaches.Comment: 17 pages, 6 figures, accepted by Geophysical and Astrophysical Fluid
Dynamic
Suspended liquid particle disturbance on laser-induced blast wave and low density distribution
The impurity effect of suspended liquid particles on the laser-induced gas breakdown was experimentally investigated in quiescent gas. The focus of this study is the investigation of the influence of the impurities on the shock wave structure as well as the low density distribution. A 532 nm Nd:YAG laser beam with an 188 mJ/pulse was focused on the chamber filled with suspended liquid particles 0.9 ± 0.63 Όm in diameter. Several shock waves are generated by multiple gas breakdowns along the beam path in the breakdown with particles. Four types of shock wave structures can be observed: (1) the dual blast waves with a similar shock radius, (2) the dual blast waves with a large shock radius at the lower breakdown, (3) the dual blast waves with a large shock radius at the upper breakdown, and (4) the triple blast waves. The independent blast waves interact with each other and enhance the shock strength behind the shock front in the lateral direction. The triple blast waves lead to the strongest shock wave in all cases. The shock wave front that propagates toward the opposite laser focal spot impinges on one another, and thereafter a transmitted shock wave (TSW) appears. The TSW interacts with the low density core called a kernel; the kernel then longitudinally expands quickly due to a Richtmyer-Meshkov-like instability. The laser-particle interaction causes an increase in the kernel volume which is approximately five times as large as that in the gas breakdown without particles. In addition, the laser-particle interaction can improve the laser energy efficiency
Emergence of a filamentary structure in the fireball from GRB spectra
It is shown that the concept of a fireball with a definite filamentary
structure naturally emerges from the analysis of the spectra of Gamma-Ray
Bursts (GRBs). These results, made possible by the recently obtained analytic
expressions of the equitemporal surfaces in the GRB afterglow, depend crucially
on the single parameter R describing the effective area of the fireball
emitting the X- and gamma ray radiation. The X- and gamma ray components of the
afterglow radiation are shown to have a thermal spectrum in the co-moving frame
of the fireball and originate from a stable shock front described
self-consistently by the Rankine-Hugoniot equations. Precise predictions are
presented on a correlations between spectral changes and intensity variations
in the prompt radiation verifiable, e.g., by the Swift and future missions. The
highly variable optical and radio emission depends instead on the parameters of
the surrounding medium. The GRB 991216 is used as a prototype for this model.Comment: 9 pages, 3 figures, to appear on International Journal of Modern
Physics
- âŠ