473 research outputs found

    Cortical mechanisms for tinnitus in humans /

    Get PDF
    PhD ThesisThis work sought to characterise neurochemical and neurophysiological processes underlying tinnitus in humans. The first study involved invasive brain recordings from a neurosurgical patient, along with experimental manipulation of his tinnitus, to map the cortical system underlying his tinnitus. Widespread tinnitus-linked changes in low- and high-frequency oscillations were observed, along with inter-regional and cross-frequency patterns of communication. The second and third studies compared tinnitus patients to controls matched for age, sex and hearing loss, measuring auditory cortex spontaneous oscillations (with magnetoencephalography) and neurochemical concentrations (with magnetic resonance spectroscopy) respectively. Unlike in previous studies not controlled for hearing loss, there were no group differences in oscillatory activity attributable to tinnitus. However, there was a significant correlation between gamma oscillations (>30Hz) and hearing loss in the tinnitus group, and between delta oscillations (1-4Hz) and perceived tinnitus loudness. In the neurochemical study, tinnitus patients had significantly reduced GABA concentrations compared to matched controls, and within this group there was a positive correlation between choline concentration (potentially linked to acetylcholine and/or neuronal plasticity) and both hearing loss, and subjective tinnitus intensity and distress. In light of present and previous findings, tinnitus may be best explained by a predictive coding model of perception, which was tested in the final experiment. This directly controlled the three main quantities comprising predictive coding models, and found that delta/theta/alpha oscillations (1-12Hz) encoded the precision of predictions, beta oscillations (12-30Hz) encoded changes to predictions, and gamma oscillations represented surprise (unexpectedness of stimuli based on predictions). The work concludes with a predictive coding model of tinnitus that builds upon the present findings and settles unresolved paradoxes in the literature. In this, precursor processes (in varying combinations) synergise to increase the precision associated with spontaneous activity in the auditory pathway to the point where it overrides higher predictions of ‘silence’.Medical Research Council Wellcome Trust and the National Institutes of Healt

    A Bill of Rights for the United Kingdom: From London to Strasbourg by the Northwest Passage?

    Get PDF
    In anticipation of the United Kingdom\u27s patriation of the European Convention on Human Rights, the author explores the possible impact that a Bill of Rights will have on the U.K. system of justice from a European and U.K. perspective. The author argues that, from a European perspective, the U.K. has an established history of yielding to supra-national law given its membership in the European Union. However, from a U.K. perspective, this will present new challenges, as the constitutionality of domestic legislation is subject to increased judicial scrutiny in ensuring conformance with European Convention obligations. The author argues that the pressures on Parliament to remedy domestic legislation as a result of decisions made by foreign judges on the European Court of Human Rights will be a particularly challenging adjustment. He concludes that, while there are lessons to be learned from other countries with bills of rights, the traditional reluctance among U.K. judges to override the will of Parliament will render the impact of such a document unpredictable

    The insolence of office: the coercive jurisdiction of the courts against minsters and officials

    Get PDF
    Cover title.published_or_final_versio

    The hearing hippocampus

    Get PDF
    The hippocampus has a well-established role in spatial and episodic memory but a broader function has been proposed including aspects of perception and relational processing. Neural bases of sound analysis have been described in the pathway to auditory cortex, but wider networks supporting auditory cognition are still being established. We review what is known about the role of the hippocampus in processing auditory information, and how the hippocampus itself is shaped by sound. In examining imaging, recording, and lesion studies in species from rodents to humans, we uncover a hierarchy of hippocampal responses to sound including during passive exposure, active listening, and the learning of associations between sounds and other stimuli. We describe how the hippocampus' connectivity and computational architecture allow it to track and manipulate auditory information – whether in the form of speech, music, or environmental, emotional, or phantom sounds. Functional and structural correlates of auditory experience are also identified. The extent of auditory-hippocampal interactions is consistent with the view that the hippocampus makes broad contributions to perception and cognition, beyond spatial and episodic memory. More deeply understanding these interactions may unlock applications including entraining hippocampal rhythms to support cognition, and intervening in links between hearing loss and dementia

    EPICUREAN THEORIES OF KNOWLEDGE FROM HERMARCHUS TO LUCRETIUS AND PHILODEMUS

    Get PDF
    The aim of this paper is to trace the development of Epicurean epistemology from the death of Epicurus in 270 BCE to the latter part of the first century BCE. The story gains interest from the fact that these Epicureans were, as would be expected, scrupulously loyal to the doctrines of their founder as they interpreted these, but at the same time found themselves obliged to elaborate and strengthen the inferential methodology he had bequeathed, initially in order to resist the sceptical critiques of the New Academy, and later in order to justify their school’s empiricism in opposition to the rationalistic Stoic theory of inferential validity. The protagonists are Colotes, Polystratus, Timasagoras, Zeno of Sidon, Philodemus and Lucretius, with Cicero an important witness

    A parahippocampal-sensory Bayesian vicious circle generates pain or tinnitus: a source-localized EEG study

    Get PDF
    Pain and tinnitus share common pathophysiological mechanisms, clinical features, and treatment approaches. A source-localized resting-state EEG study was conducted in 150 participants: 50 healthy controls, 50 pain, and 50 tinnitus patients. Resting-state activity as well as functional and effective connectivity was computed in source space. Pain and tinnitus were characterized by increased theta activity in the pregenual anterior cingulate cortex, extending to the lateral prefrontal cortex and medial anterior temporal lobe. Gamma-band activity was increased in both auditory and somatosensory cortex, irrespective of the pathology, and extended to the dorsal anterior cingulate cortex and parahippocampus. Functional and effective connectivity were largely similar in pain and tinnitus, except for a parahippocampal-sensory loop that distinguished pain from tinnitus. In tinnitus, the effective connectivity between parahippocampus and auditory cortex is bidirectional, whereas the effective connectivity between parahippocampus and somatosensory cortex is unidirectional. In pain, the parahippocampal-somatosensory cortex is bidirectional, but parahippocampal auditory cortex unidirectional. These modality-specific loops exhibited theta-gamma nesting. Applying a Bayesian brain model of brain functioning, these findings suggest that the phenomenological difference between auditory and somatosensory phantom percepts result from a vicious circle of belief updating in the context of missing sensory information. This finding may further our understanding of multisensory integration and speaks to a universal treatment for pain and tinnitus-by selectively disrupting parahippocampal-somatosensory and parahippocampal-auditory theta-gamma activity and connectivity

    An Integrative Tinnitus Model Based on Sensory Precision.

    Get PDF
    Tinnitus is a common disorder that often complicates hearing loss. Its mechanisms are incompletely understood. Current theories proposing pathophysiology from the ear to the cortex cannot individually - or collectively - explain the range of experimental evidence available. We propose a new framework, based on predictive coding, in which spontaneous activity in the subcortical auditory pathway constitutes a 'tinnitus precursor' which is normally ignored as imprecise evidence against the prevailing percept of 'silence'. Extant models feature as contributory mechanisms acting to increase either the intensity of the precursor or its precision. If precision (i.e., postsynaptic gain) rises sufficiently then tinnitus is perceived. Perpetuation arises through focused attention, which further increases the precision of the precursor, and resetting of the default prediction to expect tinnitus

    Profit-sharing between capital and labor : six essays / by Sedley Taylor

    Get PDF
    Profit-sharing between capital and labor : six essays / by Sedley Taylor New York : Humboldt, 1886 47 p. ; 24 cm The Humboldt library of scienc
    • …
    corecore