43 research outputs found

    Player–Game Interaction and Cognitive Gameplay: A Taxonomic Framework for the Core Mechanic of Videogames

    Get PDF
    Cognitive gameplay—the cognitive dimension of a player’s experience—emerges from the interaction between a player and a game. While its design requires careful consideration, cognitive gameplay can be designed only indirectly via the design of game components. In this paper, we focus on one such component—the core mechanic—which binds a player and game together through the performance of essential interactions. Little extant research has been aimed at developing frameworks to support the design of interactions within the core mechanic with cognitive gameplay in mind. We present a taxonomic framework named INFORM (Interaction desigN For the cORe Mechanic) to address this gap. INFORM employs twelve micro-level elements that collectively give structure to any individual interaction within the core mechanic. We characterize these elements in the context of videogames, and discuss their potential influences on cognitive gameplay. We situate these elements within a broader framework that synthesizes concepts relevant to game design. INFORM is a descriptive framework, and provides a common vocabulary and a set of concepts that designers can use to think systematically about issues related to micro-level interaction design and cognitive gameplay

    Player–Game Interaction and Cognitive Gameplay: A Taxonomic Framework for the Core Mechanic of Videogames

    Get PDF
    Cognitive gameplay—the cognitive dimension of a player’s experience—emerges from the interaction between a player and a game. While its design requires careful consideration, cognitive gameplay can be designed only indirectly via the design of game components. In this paper, we focus on one such component—the core mechanic—which binds a player and game together through the performance of essential interactions. Little extant research has been aimed at developing frameworks to support the design of interactions within the core mechanic with cognitive gameplay in mind. We present a taxonomic framework named INFORM (Interaction desigN For the cORe Mechanic) to address this gap. INFORM employs twelve micro-level elements that collectively give structure to any individual interaction within the core mechanic. We characterize these elements in the context of videogames, and discuss their potential influences on cognitive gameplay. We situate these elements within a broader framework that synthesizes concepts relevant to game design. INFORM is a descriptive framework, and provides a common vocabulary and a set of concepts that designers can use to think systematically about issues related to micro-level interaction design and cognitive gameplay

    Ontology-Driven Search and Triage: Design of a Web-Based Visual Interface for MEDLINE

    Get PDF
    Background: Diverse users need to search health and medical literature to satisfy open-ended goals such as making evidence-based decisions and updating their knowledge. However, doing so is challenging due to at least two major difficulties: (1) articulating information needs using accurate vocabulary and (2) dealing with large document sets returned from searches. Common search interfaces such as PubMed do not provide adequate support for exploratory search tasks. Objective: Our objective was to improve support for exploratory search tasks by combining two strategies in the design of an interactive visual interface by (1) using a formal ontology to help users build domain-specific knowledge and vocabulary and (2) providing multi-stage triaging support to help mitigate the information overload problem. Methods: We developed a Web-based tool, Ontology-Driven Visual Search and Triage Interface for MEDLINE (OVERT-MED), to test our design ideas. We implemented a custom searchable index of MEDLINE, which comprises approximately 25 million document citations. We chose a popular biomedical ontology, the Human Phenotype Ontology (HPO), to test our solution to the vocabulary problem. We implemented multistage triaging support in OVERT-MED, with the aid of interactive visualization techniques, to help users deal with large document sets returned from searches. Results: Formative evaluation suggests that the design features in OVERT-MED are helpful in addressing the two major difficulties described above. Using a formal ontology seems to help users articulate their information needs with more accurate vocabulary. In addition, multistage triaging combined with interactive visualizations shows promise in mitigating the information overload problem. Conclusions: Our strategies appear to be valuable in addressing the two major problems in exploratory search. Although we tested OVERT-MED with a particular ontology and document collection, we anticipate that our strategies can be transferred successfully to other contexts

    Design of Interactive Visualizations for Next-Generation Ultra-Large Communication Networks

    Get PDF
    © 2013 IEEE. With the increasing size and complexity of next-generation communication networks, it is critical to utilize interactive visualizations to support the monitoring, planning, and management of networks. Effectively visualizing large-scale networks is difficult with traditional methods because of the high link density and complex node relationships. Given the limited screen space, to assist Internet Service Provider\u27s (ISP) network planning and management activities, investigating how to present ultra-large-scale network data efficiently is crucial. This paper presents a real-Time interactive visualization system that combines the design strategies of progressive disclosure and multiple panels to elegantly visualize the large-scale networks and avoid the information-overload problem. The system also visualizes the configuration of the network elements and provides the network performance information, including the port-level Quality of Service (QoS) metrics. Furthermore, the system enables navigation through the port-level connection and provides different modes for multiple purposes

    Supporting Sensemaking of Complex Objects with Visualizations: Visibility and Complementarity of Interactions

    Get PDF
    Making sense of complex objects is difficult, and typically requires the use of external representations to support cognitive demands while reasoning about the objects. Visualizations are one type of external representation that can be used to support sensemaking activities. In this paper, we investigate the role of two design strategies in making the interactive features of visualizations more supportive of users’ exploratory needs when trying to make sense of complex objects. These two strategies are visibility and complementarity of interactions. We employ a theoretical framework concerned with human–information interaction and complex cognitive activities to inform, contextualize, and interpret the effects of the design strategies. The two strategies are incorporated in the design of Polyvise, a visualization tool that supports making sense of complex four-dimensional geometric objects. A mixed-methods study was conducted to evaluate the design strategies and the overall usability of Polyvise. We report the findings of the study, discuss some implications for the design of visualization tools that support sensemaking of complex objects, and propose five design guidelines. We anticipate that our results are transferrable to other contexts, and that these two design strategies can be used broadly in visualization tools intended to support activities with complex objects and information spaces

    Students\u27 perception on the use of visual tilings to support their learning of programming concepts

    Get PDF
    In this research, we explore the use of visual tiling patterns (tilings for short) in the teaching of basic programming concepts to novice students. Tilings are made by connecting regular polygons side-by-side and their construction can be defined by the use of a simple set of commands. We believe tilings are a suitable context to situate the learning of elementary programming concepts for beginning programmers. The importance of placing commands in a proper sequence, of grouping a set of commands and using them repetitively, and of identifying logical errors can be demonstrated using tilings. We have created a prototype, which allows learners to create tilings based on a simple textual language, and used it within an introductory programming class at a Chinese university, where most students have minimal or no programming experience. After using the prototype in class, we conducted a class survey asking students about their perception of the usefulness of such the tool to support their learning. In this paper, we report the findings and our experiences using the tool. © 2013 IEEE

    Human–Information Interaction—A Special Issue of the Journal of Informatics

    No full text
    Every day, people from different professions and disciplines need to use information to make decisions, plan courses of action, discover patterns in big data, solve problems, analyze situations, make sense of phenomena, learn new concepts, make forecasts about future trends, and so on. People whose professions involve the frequent or continual performance of such activities include scientists, healthcare specialists, medical researchers, librarians, journalists, engineers, stock brokers, archeologists, educators, social scientists, and others—i.e., the so-called knowledge workers. As the amount and complexity of information is on the rise, it is becoming more important to understand how humans use and interact with information to support their everyday tasks and activities. [...

    Supporting Sensemaking of Complex Objects with Visualizations: Visibility and Complementarity of Interactions

    No full text
    Making sense of complex objects is difficult, and typically requires the use of external representations to support cognitive demands while reasoning about the objects. Visualizations are one type of external representation that can be used to support sensemaking activities. In this paper, we investigate the role of two design strategies in making the interactive features of visualizations more supportive of users’ exploratory needs when trying to make sense of complex objects. These two strategies are visibility and complementarity of interactions. We employ a theoretical framework concerned with human–information interaction and complex cognitive activities to inform, contextualize, and interpret the effects of the design strategies. The two strategies are incorporated in the design of Polyvise, a visualization tool that supports making sense of complex four-dimensional geometric objects. A mixed-methods study was conducted to evaluate the design strategies and the overall usability of Polyvise. We report the findings of the study, discuss some implications for the design of visualization tools that support sensemaking of complex objects, and propose five design guidelines. We anticipate that our results are transferrable to other contexts, and that these two design strategies can be used broadly in visualization tools intended to support activities with complex objects and information spaces

    Player–Game Interaction and Cognitive Gameplay: A Taxonomic Framework for the Core Mechanic of Videogames

    No full text
    Cognitive gameplay—the cognitive dimension of a player’s experience—emerges from the interaction between a player and a game. While its design requires careful consideration, cognitive gameplay can be designed only indirectly via the design of game components. In this paper, we focus on one such component—the core mechanic—which binds a player and game together through the performance of essential interactions. Little extant research has been aimed at developing frameworks to support the design of interactions within the core mechanic with cognitive gameplay in mind. We present a taxonomic framework named INFORM (Interaction desigN For the cORe Mechanic) to address this gap. INFORM employs twelve micro-level elements that collectively give structure to any individual interaction within the core mechanic. We characterize these elements in the context of videogames, and discuss their potential influences on cognitive gameplay. We situate these elements within a broader framework that synthesizes concepts relevant to game design. INFORM is a descriptive framework, and provides a common vocabulary and a set of concepts that designers can use to think systematically about issues related to micro-level interaction design and cognitive gameplay
    corecore