32 research outputs found

    Towards 3D Magnetic Force Microscopy

    Full text link
    Magnetic force microscopy (MFM) is long established as a powerful tool for probing the local manifestation of magnetic nanostructures across a range of temperatures and applied stimuli. A major drawback of the technique, however, is that the detection of stray fields emanating from a samples surface rely on a uniaxial vertical cantilever oscillation, and thus are only sensitive to vertically oriented stray field components. The last two decades have shown an ever-increasing literature fascination for exotic topological windings where particular attention to in-plane magnetic moment rotation is highly valuable when identifying and understanding such systems. Here we present a new method of detecting in-plane magnetic stray field components, by utilizing a home made split-electrode excitation piezo that allows the simultaneous excitation of a cantilever at its fundamental flexural and torsional modes. This allows for the joint acquisition of traditional vertical mode (V-MFM) images and a lateral MFM (L-MFM) where the tip-cantilever system is only sensitive to stray fields acting perpendicular to the torsional axis of the cantilever

    Hall mobilities and sheet carrier densities in a single LiNbO3_3 conductive ferroelectric domain wall

    Full text link
    For the last decade, conductive domain walls (CDWs) in single crystals of the uniaxial model ferroelectric lithium niobate (LiNbO3_3, LNO) have shown to reach resistances more than 10 orders of magnitude lower as compared to the surrounding bulk, with charge carriers being firmly confined to sheets of a few nanometers in width. LNO thus currently witnesses an increased attention since bearing the potential for variably designing room-temperature nanoelectronic circuits and devices based on such CDWs. In this context, the reliable determination of the fundamental transport parameters of LNO CDWs, in particular the 2D charge carrier density n2Dn_{2D} and the Hall mobility μH\mu_{H} of the majority carriers, are of highest interest. In this contribution, we present and apply a robust and easy-to-prepare Hall-effect measurement setup by adapting the standard 4-probe van-der-Pauw method to contact a single, hexagonally-shaped domain wall that fully penetrates the 200-μ\mum-thick LNO bulk single crystal. We then determine n2Dn_{2D} and μH\mu_{H} for a set of external magnetic fields BB and prove the expected cosine-like angular dependence of the Hall voltage. Lastly, we present photo-Hall measurements of one and the same DW, by determining the impact of super-bandgap illumination on the 2D charge carrier density n2Dn_{2D}

    Revealing the crustal architecture of the least understood composite craton on Earth: East Antarctica

    Get PDF
    East Antarctica hosts one of the largest Precambrian cratons on Earth. Meager coastal exposures and sediment provenance studies provide glimpses into up to 3 billion years of its geological history. Extensive ice sheet cover hampers however our knowledge of crustal architecture, and consequently the geodynamic processes responsible for the growth and amalgamation of East Antarctica have remained elusive. Here we exploit recent aerogeophysical exploration efforts to help unveil the large-scale crustal architecture of East Antarctica. We focus on three sectors of East Antarctica: the Transantarctic Mountains and Wilkes Basin area; the Recovery/Dronning Maud Land area and the Gamburtsev Province. These areas provide new insights into both the margins of the so called Mawson craton and the processes that affected its interior. A 1,900 km-long linear magnetic and gravity boundary is imaged along the western flank of the Wilkes Basin and interpreted here as a crustal-scale Paleoproterozoic suture zone (ca 1.7 Ga) that inverted a former passive margin. Two ribbon-like Archean and Paleoproterozic microcontinents were assembled during this stage, resembling modes of amalgamation of Paleoproterozoic microcontinental ribbons in Australia. The proposed Proterozoic sutures and microcontinent boundaries also influenced Neoproterozoic rifted margin and early Cambrian back-arc basins in the Wilkes Basin/Transantarctic Mountains region. In the Recovery/Dronning Maud Land region our new potential field compilations reveal a wide tract of anastomising crustal-scale shear zones, likely of Pan-African age that flank and variably deform the margins of several distinct Archean, Paleo-Mesoproterozoic and Grenvillian age crustal blocks. In the Gamburtsev Province new magnetic and gravity models provide insights into the Gamburtsev Suture (Ferraccioli et al., 2011, Nature) that separates the Ruker Province from an inferred Grenvillian-age orogenic Gamburtsev Province with remarkably thick crust (up to 60 km thick) and thick lithosphere (over 200 km thick). We suggest that a recently inferred Tonian-age accretionary belt identified in the Sor Rondane region continues further inland in the Gamburtsev Province and was likely also reactivated during Pan-African age transpression linked to Gondwana assembly

    Net-zero solutions and research priorities in the 2020s

    Get PDF
    Key messages • Technological, societal and nature-based solutions should work together to enable systemic change towards a regenerative society, and to deliver net-zero greenhouse gas (GHG) emissions. • Prioritise research into efficient, low-carbon and carbon-negative solutions for sectors that are difficult to decarbonise; i.e. energy storage, road transport, shipping, aviation and grid infrastructure. • Each solution should be assessed with respect to GHG emissions reductions, energy efficiency and societal implications to provide a basis for developing long-term policies, maximising positive impact of investment and research effort, and guiding industry investors in safe and responsible planning

    Protecting children in low-income and middle-income countries from COVID-19

    Get PDF
    CITATION: Ahmed, S. et al. 2020. Protecting children in low-income and middle-income countries from COVID-19. BMJ Global Health, 5:e002844. doi:10.1136/bmjgh-2020-002844.The original publication is available at https://gh.bmj.comA saving grace of the COVID-19 pandemic in high-income and upper middle-income countries has been the relative sparing of children. As the disease spreads across low-income and middle-income countries (LMICs), long-standing system vulnerabilities may tragically manifest, and we worry that children will be increasingly impacted, both directly and indirectly. Drawing on our shared child pneumonia experience globally, we highlight these potential impacts on children in LMICs and propose actions for a collective response.https://gh.bmj.com/content/5/5/e002844.abstractPublisher's versio

    Rapamycin Pharmacokinetic and Pharmacodynamic Relationships in Osteosarcoma: A Comparative Oncology Study in Dogs

    Get PDF
    Signaling through the mTOR pathway contributes to growth, progression and chemoresistance of several cancers. Accordingly, inhibitors have been developed as potentially valuable therapeutics. Their optimal development requires consideration of dose, regimen, biomarkers and a rationale for their use in combination with other agents. Using the infrastructure of the Comparative Oncology Trials Consortium many of these complex questions were asked within a relevant population of dogs with osteosarcoma to inform the development of mTOR inhibitors for future use in pediatric osteosarcoma patients.This prospective dose escalation study of a parenteral formulation of rapamycin sought to define a safe, pharmacokinetically relevant, and pharmacodynamically active dose of rapamycin in dogs with appendicular osteosarcoma. Dogs entered into dose cohorts consisting of 3 dogs/cohort. Dogs underwent a pre-treatment tumor biopsy and collection of baseline PBMC. Dogs received a single intramuscular dose of rapamycin and underwent 48-hour whole blood pharmacokinetic sampling. Additionally, daily intramuscular doses of rapamycin were administered for 7 days with blood rapamycin trough levels collected on Day 8, 9 and 15. At Day 8 post-treatment collection of tumor and PBMC were obtained. No maximally tolerated dose of rapamycin was attained through escalation to the maximal planned dose of 0.08 mg/kg (2.5 mg/30 kg dog). Pharmacokinetic analysis revealed a dose-dependent exposure. In all cohorts modulation of the mTOR pathway in tumor and PBMC (pS6RP/S6RP) was demonstrated. No change in pAKT/AKT was seen in tumor samples following rapamycin therapy.Rapamycin may be safely administered to dogs and can yield therapeutic exposures. Modulation pS6RP/S6RP in tumor tissue and PBMCs was not dependent on dose. Results from this study confirm that the dog may be included in the translational development of rapamycin and potentially other mTOR inhibitors. Ongoing studies of rapamycin in dogs will define optimal schedules for their use in cancer and evaluate the role of rapamycin use in the setting of minimal residual disease

    Migratory Pathways and Connectivity in Asian Houbara Bustards: Evidence from 15 Years of Satellite Tracking

    Get PDF
    Information on migratory pathways and connectivity is essential to understanding population dynamics and structure of migrant species. Our manuscript uses a unique dataset, the fruit of 103 individual Asian houbara bustards captured on their breeding grounds in Central Asia over 15 years and equipped with satellite transmitters, to provide a better understanding of migratory pathways and connectivity; such information is critical to the implementation of biologically sound conservation measures in migrant species. At the scale of the distribution range we find substantial migratory connectivity, with a clear separation of migration pathways and wintering areas between western and eastern migrants. Within eastern migrants, we also describe a pattern of segregation on the wintering grounds. But at the local level connectivity is weak: birds breeding within the limits of our study areas were often found several hundreds of kilometres apart during winter. Although houbara wintering in Arabia are known to originate from Central Asia, out of all the birds captured and tracked here not one wintered on the Arabian Peninsula. This is very likely the result of decades of unregulated off-take and severe habitat degradation in this area. At a time when conservation measures are being implemented to safeguard the long-term future of this species, this study provides critical data on the spatial structuring of populations

    'An Ingenious Man Enabled by Contract': Entrepreneurship and the Rise of Contract

    Full text link

    AVONET: morphological, ecological and geographical data for all birds

    Get PDF
    Functional traits offer a rich quantitative framework for developing and testing theories in evolutionary biology, ecology and ecosystem science. However, the potential of functional traits to drive theoretical advances and refine models of global change can only be fully realised when species‐level information is complete. Here we present the AVONET dataset containing comprehensive functional trait data for all birds, including six ecological variables, 11 continuous morphological traits, and information on range size and location. Raw morphological measurements are presented from 90,020 individuals of 11,009 extant bird species sampled from 181 countries. These data are also summarised as species averages in three taxonomic formats, allowing integration with a global phylogeny, geographical range maps, IUCN Red List data and the eBird citizen science database. The AVONET dataset provides the most detailed picture of continuous trait variation for any major radiation of organisms, offering a global template for testing hypotheses and exploring the evolutionary origins, structure and functioning of biodiversity

    Evaluation of appendicitis risk prediction models in adults with suspected appendicitis

    Get PDF
    Background Appendicitis is the most common general surgical emergency worldwide, but its diagnosis remains challenging. The aim of this study was to determine whether existing risk prediction models can reliably identify patients presenting to hospital in the UK with acute right iliac fossa (RIF) pain who are at low risk of appendicitis. Methods A systematic search was completed to identify all existing appendicitis risk prediction models. Models were validated using UK data from an international prospective cohort study that captured consecutive patients aged 16–45 years presenting to hospital with acute RIF in March to June 2017. The main outcome was best achievable model specificity (proportion of patients who did not have appendicitis correctly classified as low risk) whilst maintaining a failure rate below 5 per cent (proportion of patients identified as low risk who actually had appendicitis). Results Some 5345 patients across 154 UK hospitals were identified, of which two‐thirds (3613 of 5345, 67·6 per cent) were women. Women were more than twice as likely to undergo surgery with removal of a histologically normal appendix (272 of 964, 28·2 per cent) than men (120 of 993, 12·1 per cent) (relative risk 2·33, 95 per cent c.i. 1·92 to 2·84; P < 0·001). Of 15 validated risk prediction models, the Adult Appendicitis Score performed best (cut‐off score 8 or less, specificity 63·1 per cent, failure rate 3·7 per cent). The Appendicitis Inflammatory Response Score performed best for men (cut‐off score 2 or less, specificity 24·7 per cent, failure rate 2·4 per cent). Conclusion Women in the UK had a disproportionate risk of admission without surgical intervention and had high rates of normal appendicectomy. Risk prediction models to support shared decision‐making by identifying adults in the UK at low risk of appendicitis were identified
    corecore