2,133 research outputs found

    Fine-scale movement of the European hedgehog: An application of spool-and-thread tracking

    Get PDF
    The European hedgehog is a significant predator species of rare and endangered ground-nesting birds in the riverbeds of the Waitaki Basin, South Island, New Zealand. Studies focusing on the movements and habits of this species have generally been limited to broad-scale radio-tracking studies or incidental trap-catch data. Within our study, we aimed to investigate the finer scale movement patterns of the hedgehog in relation to vegetation structure by using spool-and-thread tracking. We captured 30 hedgehogs (15 female, 15 male) within the study area, and spool-and-thread-tracked the movements of each over a single night. Only two of the 30 animals moved onto the gravel areas of the riverbeds where birds nest - hedgehogs may therefore not target birds' nests as a primary prey source, but rather as a secondary prey item. The movement paths were all non-random, and males demonstrated particular linearity in their tracks. This straighter and more directed movement may be due to more intensive male search at this time of the year. We also assessed habitat use using a very high resolution habitat map (derived from Ikonos 4-m-resolution satellite image). Dense grassland was the most selected habitat type, perhaps because insect prey are at a higher density in this vegetation type. Hedgehogs (particularly males) also used boundaries of all habitat types significantly more than the centre of habitat patches. We found the spool-and-thread tracking technique does have limitations: (1) it could be inappropriate for animals exhibiting a significant escape response; (2) the data do not include a temporal dimension. However, these problems were not considered relevant for this study. Fine-scale studies such as this can provide increased power when investigating the ecology of species at a scale relevant to trap placement

    Entropy-driven formation of the gyroid cubic phase

    Get PDF
    We show, by computer simulation, that tapered or pear-shaped particles, interacting through purely repulsive interactions, can freely self-assemble to form the three-dimensionally periodic, gyroid cubic phase. The Ia3d gyroid cubic phase is formed by these particles both on compression of an isotropic configuration and on expansion of a smectic A bilayer arrangement. For the latter case, it is possible identify the steps by which the topological transformation from non-intersecting planes to fully interpenetrating, periodic networks takes place</p

    Towards 3D Magnetic Force Microscopy

    Full text link
    Magnetic force microscopy (MFM) is long established as a powerful tool for probing the local manifestation of magnetic nanostructures across a range of temperatures and applied stimuli. A major drawback of the technique, however, is that the detection of stray fields emanating from a samples surface rely on a uniaxial vertical cantilever oscillation, and thus are only sensitive to vertically oriented stray field components. The last two decades have shown an ever-increasing literature fascination for exotic topological windings where particular attention to in-plane magnetic moment rotation is highly valuable when identifying and understanding such systems. Here we present a new method of detecting in-plane magnetic stray field components, by utilizing a home made split-electrode excitation piezo that allows the simultaneous excitation of a cantilever at its fundamental flexural and torsional modes. This allows for the joint acquisition of traditional vertical mode (V-MFM) images and a lateral MFM (L-MFM) where the tip-cantilever system is only sensitive to stray fields acting perpendicular to the torsional axis of the cantilever

    Mechanisms of lipid extraction from skin lipid bilayers by sebum triglycerides

    Get PDF
    The skin surface, our first barrier against the external environment, is covered by the sebum oil, a lipid film composed of sebaceous and epidermal lipids, which is important in the regulation of the hydration level of our skin. Here, we investigate the pathways leading to the transfer of epidermal lipids from the skin lipid bilayer to the sebum. We show that the sebum triglycerides, a major component of sebum, interact strongly with the epidermal lipids and extract them from the bilayer. Using microsecond time scale molecular dynamics simulations, we identify and quantify the free energy associated with the skin lipid extraction process

    Microstrip Device for Broadband (15–65 GHz) Measurement of Dielectric Properties of Nematic Liquid Crystals

    Get PDF
    The essential dielectric properties, the basic alignment techniques, and the common measurement methods of the nematic liquid crystal (LC) at RF are briefly reviewed. A new device for the broadband measurement of the dielectric constants and loss tangents of nematic LCs at microwave and millimeter-wave frequencies is presented. This device whose specification and fabrication are outlined is essentially a two dielectric layer microstrip structure with coplanar-waveguide terminals, which is easy to fabricate. Compared to previous structures, the proposed device is extremely broadband with 15-65-GHz bandwidth, benefits from a solid exposed ground plane for easy temperature test, and operates under bias voltage. The technique for the extraction of the dielectric parameters of the nematic LC analyzed by this device is explained and the sources imposing the frequency limits on the device performance are identified. Two different nematic LCs, MDA-00-3506 and GT3-23001, are characterized and the results are shown to compare well with those available in the literature. In the comparisons, the maximum difference found for the dielectric constants for MDA-00-3506 is 5% and for GT3-23001 is 5.3%

    New type of microengine using internal combustion of hydrogen and oxygen

    Get PDF
    Microsystems become part of everyday life but their application is restricted by lack of strong and fast motors (actuators) converting energy into motion. For example, widespread internal combustion engines cannot be scaled down because combustion reactions are quenched in a small space. Here we present an actuator with the dimensions 100x100x5 um^3 that is using internal combustion of hydrogen and oxygen as part of its working cycle. Water electrolysis driven by short voltage pulses creates an extra pressure of 0.5-4 bar for a time of 100-400 us in a chamber closed by a flexible membrane. When the pulses are switched off this pressure is released even faster allowing production of mechanical work in short cycles. We provide arguments that this unexpectedly fast pressure decrease is due to spontaneous combustion of the gases in the chamber. This actuator is the first step to truly microscopic combustion engines.Comment: Paper and Supplementary Information (to appear in Scientific Reports

    Simple Host-Guest Chemistry To Modulate the Process of Concentration and Crystallization of Membrane Proteins by Detergent Capture in a Microfluidic Device

    Get PDF
    This paper utilizes cyclodextrin-based host-guest chemistry in a microfluidic device to modulate the crystallization of membrane proteins and the process of concentration of membrane protein samples. Methyl-beta-cyclodextrin (MBCD) can efficiently capture a wide variety of detergents commonly used for the stabilization of membrane proteins by sequestering detergent monomers. Reaction Center (RC) from Blastochloris viridis was used here as a model system. In the process of concentrating membrane protein samples, MBCD was shown to break up free detergent micelles and prevent them from being concentrated. The addition of an optimal amount of MBCD to the RC sample captured loosely bound detergent from the protein-detergent complex and improved sample homogeneity, as characterized by dynamic light scattering. Using plug-based microfluidics, RC crystals were grown in the presence of MBCD, giving a different morphology and space group than crystals grown without MBCD. The crystal structure of RC crystallized in the presence of MBCD was consistent with the changes in packing and crystal contacts hypothesized for removal of loosely bound detergent. The incorporation of MBCD into a plug-based microfluidic crystallization method allows efficient use of limited membrane protein sample by reducing the amount of protein required and combining sparse matrix screening and optimization in one experiment. The use of MBCD for detergent capture can be expanded to develop cyclodextrin-derived molecules for fine-tuned detergent capture and thus modulate membrane protein crystallization in an even more controllable way

    Calculation of the Phase Behavior of Lipids

    Full text link
    The self-assembly of monoacyl lipids in solution is studied employing a model in which the lipid's hydrocarbon tail is described within the Rotational Isomeric State framework and is attached to a simple hydrophilic head. Mean-field theory is employed, and the necessary partition function of a single lipid is obtained via a partial enumeration over a large sample of molecular conformations. The influence of the lipid architecture on the transition between the lamellar and inverted-hexagonal phases is calculated, and qualitative agreement with experiment is found.Comment: to appear in Phys.Rev.
    • …
    corecore