2 research outputs found

    EEF2 Analysis Challenges the Monophyly of Archaeplastida and Chromalveolata

    Get PDF
    BACKGROUND: Classification of eukaryotes provides a fundamental phylogenetic framework for ecological, medical, and industrial research. In recent years eukaryotes have been classified into six major supergroups: Amoebozoa, Archaeplastida, Chromalveolata, Excavata, Opisthokonta, and Rhizaria. According to this supergroup classification, Archaeplastida and Chromalveolata each arose from a single plastid-generating endosymbiotic event involving a cyanobacterium (Archaeplastida) or red alga (Chromalveolata). Although the plastids within members of the Archaeplastida and Chromalveolata share some features, no nucleocytoplasmic synapomorphies supporting these supergroups are currently known. METHODOLOGY/PRINCIPAL FINDINGS: This study was designed to test the validity of the Archaeplastida and Chromalveolata through the analysis of nucleus-encoded eukaryotic translation elongation factor 2 (EEF2) and cytosolic heat-shock protein of 70 kDa (HSP70) sequences generated from the glaucophyte Cyanophora paradoxa, the cryptophytes Goniomonas truncata and Guillardia theta, the katablepharid Leucocryptos marina, the rhizarian Thaumatomonas sp. and the green alga Mesostigma viride. The HSP70 phylogeny was largely unresolved except for certain well-established groups. In contrast, EEF2 phylogeny recovered many well-established eukaryotic groups and, most interestingly, revealed a well-supported clade composed of cryptophytes, katablepharids, haptophytes, rhodophytes, and Viridiplantae (green algae and land plants). This clade is further supported by the presence of a two amino acid signature within EEF2, which appears to have arisen from amino acid replacement before the common origin of these eukaryotic groups. CONCLUSIONS/SIGNIFICANCE: Our EEF2 analysis strongly refutes the monophyly of the Archaeplastida and the Chromalveolata, adding to a growing body of evidence that limits the utility of these supergroups. In view of EEF2 phylogeny and other morphological evidence, we discuss the possibility of an alternative eukaryotic supergroup

    Complete mitochondrial genomes of the three brown algae (Heterokonta: Phaeophyceae) Dictyota dichotoma, Fucus vesiculosus and Desmarestia viridis

    No full text
    We report the complete mitochondrial sequences of three brown algae (Dictyota dichotoma, Fucus vesiculosus and Desmarestia viridis) belonging to three phaeophycean lineages. They have circular mapping organization and contain almost the same set of mitochondrial genes, despite their size differences (31,617, 36,392 and 39,049 bp, respectively). These include the genes for three rRNAs (23S, 16S and 5S), 25-26 tRNAs, 35 known mitochondrial proteins and 3-4 ORFs. This gene set complements two previously studied brown algal mtDNAs, Pylaiella littoralis and Laminaria digitata. Exceptions to the very similar overall organization include the displacement of orfs, tRNA genes and four protein-coding genes found at different locations in the D. dichotoma mitochondrial genome. We present a phylogenetic analysis based on ten concatenated genes (7,479 nucleotides) and 29 taxa. Stramenopiles were always monophyletic with heterotrophic species at the base. Results support both multiple primary and multiple secondary acquisitions of plastids
    corecore